Visible to the public Biblio

Filters: Keyword is home area network  [Clear All Filters]
2015-05-06
Nicanfar, H., Jokar, P., Beznosov, K., Leung, V.C.M..  2014.  Efficient Authentication and Key Management Mechanisms for Smart Grid Communications. Systems Journal, IEEE. 8:629-640.

A smart grid (SG) consists of many subsystems and networks, all working together as a system of systems, many of which are vulnerable and can be attacked remotely. Therefore, security has been identified as one of the most challenging topics in SG development, and designing a mutual authentication scheme and a key management protocol is the first important step. This paper proposes an efficient scheme that mutually authenticates a smart meter of a home area network and an authentication server in SG by utilizing an initial password, by decreasing the number of steps in the secure remote password protocol from five to three and the number of exchanged packets from four to three. Furthermore, we propose an efficient key management protocol based on our enhanced identity-based cryptography for secure SG communications using the public key infrastructure. Our proposed mechanisms are capable of preventing various attacks while reducing the management overhead. The improved efficiency for key management is realized by periodically refreshing all public/private key pairs as well as any multicast keys in all the nodes using only one newly generated function broadcasted by the key generator entity. Security and performance analyses are presented to demonstrate these desirable attributes.

2015-05-01
Tsado, Y., Lund, D., Gamage, K..  2014.  Resilient wireless communication networking for Smart grid BAN. Energy Conference (ENERGYCON), 2014 IEEE International. :846-851.

The concept of Smart grid technology sets greater demands for reliability and resilience on communications infrastructure. Wireless communication is a promising alternative for distribution level, Home Area Network (HAN), smart metering and even the backbone networks that connect smart grid applications to control centres. In this paper, the reliability and resilience of smart grid communication network is analysed using the IEEE 802.11 communication technology in both infrastructure single hop and mesh multiple-hop topologies for smart meters in a Building Area Network (BAN). Performance of end to end delay and Round Trip Time (RTT) of an infrastructure mode smart meter network for Demand Response (DR) function is presented. Hybrid deployment of these network topologies is also suggested to provide resilience and redundancy in the network during network failure or when security of the network is circumvented. This recommendation can also be deployed in other areas of the grid where wireless technologies are used. DR communication from consumer premises is used to show the performance of an infrastructure mode smart metering network.