Visible to the public Biblio

Filters: Keyword is conversational AI  [Clear All Filters]
2023-05-12
Shubham, Kumar, Venkatesan, Laxmi Narayen Nagarajan, Jayagopi, Dinesh Babu, Tumuluri, Raj.  2022.  Multimodal Embodied Conversational Agents: A discussion of architectures, frameworks and modules for commercial applications. 2022 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). :36–45.
With the recent advancements in automated communication technology, many traditional businesses that rely on face-to-face communication have shifted to online portals. However, these online platforms often lack the personal touch essential for customer service. Research has shown that face-to- face communication is essential for building trust and empathy with customers. A multimodal embodied conversation agent (ECA) can fill this void in commercial applications. Such a platform provides tools to understand the user’s mental state by analyzing their verbal and non-verbal behaviour and allows a human-like avatar to take necessary action based on the context of the conversation and as per social norms. However, the literature to understand the impact of ECA agents on commercial applications is limited because of the issues related to platform and scalability. In our work, we discuss some existing work that tries to solve the issues related to scalability and infrastructure. We also provide an overview of the components required for developing ECAs and their deployment in various applications.
ISSN: 2771-7453
2022-08-26
Christopherjames, Jim Elliot, Saravanan, Mahima, Thiyam, Deepa Beeta, S, Prasath Alias Surendhar, Sahib, Mohammed Yashik Basheer, Ganapathi, Manju Varrshaa, Milton, Anisha.  2021.  Natural Language Processing based Human Assistive Health Conversational Agent for Multi-Users. 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC). :1414–1420.
Background: Most of the people are not medically qualified for studying or understanding the extremity of their diseases or symptoms. This is the place where natural language processing plays a vital role in healthcare. These chatbots collect patients' health data and depending on the data, these chatbot give more relevant data to patients regarding their body conditions and recommending further steps also. Purposes: In the medical field, AI powered healthcare chatbots are beneficial for assisting patients and guiding them in getting the most relevant assistance. Chatbots are more useful for online search that users or patients go through when patients want to know for their health symptoms. Methods: In this study, the health assistant system was developed using Dialogflow application programming interface (API) which is a Google's Natural language processing powered algorithm and the same is deployed on google assistant, telegram, slack, Facebook messenger, and website and mobile app. With this web application, a user can make health requests/queries via text message and might also get relevant health suggestions/recommendations through it. Results: This chatbot acts like an informative and conversational chatbot. This chatbot provides medical knowledge such as disease symptoms and treatments. Storing patients personal and medical information in a database for further analysis of the patients and patients get real time suggestions from doctors. Conclusion: In the healthcare sector AI-powered applications have seen a remarkable spike in recent days. This covid crisis changed the whole healthcare system upside down. So this NLP powered chatbot system reduced office waiting, saving money, time and energy. Patients might be getting medical knowledge and assisting ourselves within their own time and place.
Zhu, Jessica, Van Brummelen, Jessica.  2021.  Teaching Students About Conversational AI Using Convo, a Conversational Programming Agent. 2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). :1–5.
Smart assistants, like Amazon's Alexa or Apple's Siri, have become commonplace in many people's lives, appearing in their phones and homes. Despite their ubiquity, these conversational AI agents still largely remain a mystery to many, in terms of how they work and what they can do. To lower the barrier to entry to understanding and creating these agents for young students, we expanded on Convo, a conversational programming agent that can respond to both voice and text inputs. The previous version of Convo focused on teaching only programming skills, so we created a simple, intuitive user interface for students to use those programming skills to train and create their own conversational AI agents. We also developed a curriculum to teach students about key concepts in AI and conversational AI in particular. We ran a 3-day workshop with 15 participating middle school students. Through the data collected from the pre- and post-workshop surveys as well as a mid-workshop brainstorming session, we found that after the workshop, students tended to think that conversational AI agents were less intelligent than originally perceived, gained confidence in their abilities to build these agents, and learned some key technical concepts about conversational AI as a whole. Based on these results, we are optimistic about CONVO'S ability to teach and empower students to develop conversational AI agents in an intuitive way.
2019-12-16
Xue, Zijun, Ko, Ting-Yu, Yuchen, Neo, Wu, Ming-Kuang Daniel, Hsieh, Chu-Cheng.  2018.  Isa: Intuit Smart Agent, A Neural-Based Agent-Assist Chatbot. 2018 IEEE International Conference on Data Mining Workshops (ICDMW). :1423–1428.
Hiring seasonal workers in call centers to provide customer service is a common practice in B2C companies. The quality of service delivered by both contracting and employee customer service agents depends heavily on the domain knowledge available to them. When observing the internal group messaging channels used by agents, we found that similar questions are often asked repetitively by different agents, especially from less experienced ones. The goal of our work is to leverage the promising advances in conversational AI to provide a chatbot-like mechanism for assisting agents in promptly resolving a customer's issue. In this paper, we develop a neural-based conversational solution that employs BiLSTM with attention mechanism and demonstrate how our system boosts the effectiveness of customer support agents. In addition, we discuss the design principles and the necessary considerations for our system. We then demonstrate how our system, named "Isa" (Intuit Smart Agent), can help customer service agents provide a high-quality customer experience by reducing customer wait time and by applying the knowledge accumulated from customer interactions in future applications.