Visible to the public Biblio

Filters: Keyword is mining gap  [Clear All Filters]
2019-12-16
Tsabary, Itay, Eyal, Ittay.  2018.  The Gap Game. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :713-728.

Blockchain-based cryptocurrencies secure a decentralized consensus protocol by incentives. The protocol participants, called miners, generate (mine) a series of blocks, each containing monetary transactions created by system users. As incentive for participation, miners receive newly minted currency and transaction fees paid by transaction creators. Blockchain bandwidth limits lead users to pay increasing fees in order to prioritize their transactions. However, most prior work focused on models where fees are negligible. In a notable exception, Carlsten et al. [17] postulated that if incentives come only from fees then a mining gap would form\textasciitilde— miners would avoid mining when the available fees are insufficient. In this work, we analyze cryptocurrency security in realistic settings, taking into account all elements of expenses and rewards. To study when gaps form, we analyze the system as a game we call the gap game. We analyze the game with a combination of symbolic and numeric analysis tools in a wide range of scenarios. Our analysis confirms Carlsten et al.'s postulate; indeed, we show that gaps form well before fees are the only incentive, and analyze the implications on security. Perhaps surprisingly, we show that different miners choose different gap sizes to optimize their utility, even when their operating costs are identical. Alarmingly, we see that the system incentivizes large miner coalitions, reducing system decentralization. We describe the required conditions to avoid the incentive misalignment, providing guidelines for future cryptocurrency design.