Visible to the public Biblio

Filters: Keyword is MESH network  [Clear All Filters]
2022-12-02
Nihtilä, Timo, Berg, Heikki.  2022.  Energy Consumption of DECT-2020 NR Mesh Networks. 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). :196—201.
ETSI DECT-2020 New Radio (NR) is a new flexible radio interface targeted to support a broad range of wireless Internet of Things (IoT) applications. Recent reports have shown that DECT-2020 NR achieves good delay performance and it has been shown to fulfill both massive machine-type communications (mMTC) and ultra-reliable low latency communications (URLLC) requirements for 5th generation (5G) networks. A unique aspect of DECT-2020 as a 5G technology is that it is an autonomous wireless mesh network (WMN) protocol where the devices construct and uphold the network independently without the need for base stations or core network architecture. Instead, DECT-2020 NR relies on part of the network devices taking the role of a router to relay data through the network. This makes deployment of a DECT-2020 NR network affordable and extremely easy, but due to the nature of the medium access protocol, the routing responsibility adds an additional energy consumption burden to the nodes, who in the IoT domain are likely to be equipped with a limited battery capacity. In this paper, we analyze by system level simulations the energy consumption of DECT-2020 NR networks with different network sizes and topologies and how the reported low latencies can be upheld given the energy constraints of IoT devices.
2022-03-14
Zharikov, Alexander, Konstantinova, Olga, Ternovoy, Oleg.  2021.  Building a Mesh Network Model with the Traffic Caching Based on the P2P Mechanism. 2021 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1–5.
Currently, the technology of wireless mesh networks is actively developing. In 2021, Gartner included mesh network technologies and the tasks to ensure their security in the TOP global trends. A large number of scientific works focus on the research and modeling the traffic transmission in such networks. At the same time, they often bring up the “bottle neck” problem, characteristic of individual mesh network nodes. To address the issue, the authors of the article propose using the data caching mechanism and placing the cache data straight on the routers. The mathematical model presented in the article allows building a route with the highest access speed to the requested content by the modified Dijkstra algorithm. Besides, if the mesh network cache lacks the required content, the routers with the Internet access are applied. Practically, the considered method of creating routes to the content, which has already been requested by the users in the mesh network, allows for the optimal efficient use of the router bandwidth capacity distribution and reduces the latency period.
2022-01-31
Jadhav, Krishna D, Balaji, Sripathy.  2021.  Analysis of Wireless Mesh Security to Minimize Privacy and Security Breach. 2021 IEEE 12th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0797–0804.
Due to its minimal price and expandable wireless open system interconnection options for the coming years, wireless mesh networking is appealing, developing, and novel medium of speech, which is why it is becoming a somewhat widely used communication field. In all network types, one of the essential factors for prevalent and trustworthy communication is cybersecurity. The IEEE 802.11 working gathering has created various correspondence guidelines. Yet, they are by and by focusing on the 802.11s standard because of its dynamic setup and geography learning abilities. Information, voice, and directions are steered between hubs employing remote lattice organising. WMNs incidentally give nearby 802.11g admittance to customers and connection neighbours utilising 802.11a "backhaul," but this isn’t generally the situation because of changing requirements, for example, top information rate and inclusion range. The small cross-sectional organisation emerged as a fundamental innovation to enable broadband system management in large regions. It benefits specialised organisations by reducing the cost of sending networks and end customers by providing ubiquitous Internet access anywhere, anytime. Given the idea of wireless mesh networking and the lack of integrated organisational technology, small grid networks are powerless against malicious attacks. In the meantime, the limit of multi-radio multi-channel correspondence, the need for heterogeneous organisation coordination, and the interest for multi-bounce remote equality often render conventional security strategies ineffectual or challenging to carry out. Thus, wireless mesh networking presents new issues that require more viable and relevant arrangements. WMNs have piqued the curiosity of both scholastics and industry because of their promising future. Numerous testbeds are built for research purposes, and business items for veritable WMNs are accessible. Anyway, a few concerns should be cleared up before they can very well become widespread. For example, the accessible MAC and routing conventions are not customisable; the throughput drops impressively with an increasing number of hubs or bounces in WMNs. Because of the weakness of WMNs against various malicious attacks, the security and protection of correspondence is a serious concern. For example, enemies can sniff long-distance correspondence to obtain sensitive data. Attackers can carry out DoS attacks and control the substance of the information sent through compromised hubs, thereby endangering the company’s secret, accessibility authenticity, and integrity. WMNs, like compact Impromptu Organisations (MANETs), share a typical medium, no traffic aggregate point, and incredible topography. Due to these restrictions, normal safety frameworks in wired associations can’t be quickly applied to WMNs. Also, the techniques utilised in MANETs are not viable with WMNs. This is because of the manner in which WMNs expand MANETs in different ways. Framework centres are generally outfitted with an assortment of radios. Then, at that point, many channels are doled out to every centre to work with concurrent data move and diversity.
2021-03-01
Dubey, R., Louis, S. J., Sengupta, S..  2020.  Evolving Dynamically Reconfiguring UAV-hosted Mesh Networks. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
We use potential fields tuned by genetic algorithms to dynamically reconFigure unmanned aerial vehicles networks to serve user bandwidth needs. Such flying network base stations have applications in the many domains needing quick temporary networked communications capabilities such as search and rescue in remote areas and security and defense in overwatch and scouting. Starting with an initial deployment that covers an area and discovers how users are distributed across this area of interest, tuned potential fields specify subsequent movement. A genetic algorithm tunes potential field parameters to reposition UAVs to create and maintain a mesh network that maximizes user bandwidth coverage and network lifetime. Results show that our evolutionary adaptive network deployment algorithm outperforms the current state of the art by better repositioning the unmanned aerial vehicles to provide longer coverage lifetimes while serving bandwidth requirements. The parameters found by the genetic algorithm on four training scenarios with different user distributions lead to better performance than achieved by the state of the art. Furthermore, these parameters also lead to superior performance in three never before seen scenarios indicating that our algorithm finds parameter values that generalize to new scenarios with different user distributions.
Santos, L. S. dos, Nascimento, P. R. M., Bento, L. M. S., Machado, R. C. S., Amorim, C. L..  2020.  Development of security mechanisms for a remote sensing system based on opportunistic and mesh networks. 2020 IEEE International Workshop on Metrology for Industry 4.0 IoT. :418–422.
The present work describes a remote environment monitoring system based on the paradigms of mesh networks and opportunistic networks, whereby a sensor node can explore “con-nectivity windows” to transmit information that will eventually reach another network participants. We discuss the threats to the system's security and propose security mechanisms for the system ensuring the integrity and availability of monitoring information, something identified as critical to its proper operation.
Chakravarty, S., Hopkins, A..  2020.  LoRa Mesh Network with BeagleBone Black. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :306–311.
This paper investigates the use of BeagleBone Black Wireless single-board Linux computers with Long Range (LoRa) transceivers to send and receive information in a mesh network while one of the transmitting/receiving nodes is acting as a relay in the system. An experiment is conducted to examine how long each LoRa node needed to learn the transmission intervals of any other transmitting nodes on the network and to synchronize with the other nodes prior to transmission. The spread factor, bandwidth, and coding rate are all varied for a total of 18 different combinations. A link to the Python code used on the BeagleBone Black is provided at the end of this paper. The best parameter combinations for each individual node and for the system as a whole is investigated. Additional experiments and applications of this technology are explored in the conclusions.
2020-09-04
Ghori, Muhammad Rizwan, Wan, Tat-Chee, Anbar, Mohammed, Sodhy, Gian Chand, Rizwan, Amna.  2019.  Review on Security in Bluetooth Low Energy Mesh Network in Correlation with Wireless Mesh Network Security. 2019 IEEE Student Conference on Research and Development (SCOReD). :219—224.

Wireless Mesh Networks (WMN) are becoming inevitable in this world of high technology as it provides low cost access to broadband services. Moreover, the technologists are doing research to make WMN more reliable and secure. Subsequently, among wireless ad-hoc networking technologies, Bluetooth Low Energy (BLE) is gaining high degree of importance among researchers due to its easy availability in the gadgets and low power consumption. BLE started its journey from version 4.0 and announced the latest version 5 with mesh support capability. BLE being a low power and mesh supported technology is nowadays among the hot research topics for the researchers. Many of the researchers are working on BLE mesh technology to make it more efficient and smart. Apart from other variables of efficiency, like all communication networks, mesh network security is also of a great concern. In view of the aforesaid, this paper provides a comprehensive review on several works associated to the security in WMN and BLE mesh networks and the research related to the BLE security protocols. Moreover, after the detailed research on related works, this paper has discussed the pros and cons of the present developed mesh security mechanisms. Also, at the end after extracting the curx from the present research on WMN and BLE mesh security, this research study has devised some solutions as how to mitigate the BLE mesh network security lapses.

2020-01-13
van Kerkhoven, Jason, Charlebois, Nathaniel, Robertson, Alex, Gibson, Brydon, Ahmed, Arslan, Bouida, Zied, Ibnkahla, Mohamed.  2019.  IPv6-Based Smart Grid Communication over 6LoWPAN. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Smart Grid is a major element of the Smart City concept that enables two-way communication of energy data between electric utilities and their consumers. These communication technologies are going through sharp modernization to meet future demand growth and to achieve reliability, security, and efficiency of the electric grid. In this paper, we implement an IPv6 based two-way communication system between the transformer agent (TA), installed at local electric transformer and various customer agents (CAs), connected to customer's smart meter. Various homes share their energy usage with the TA which in turn sends the utility's recommendations to the CAs. Raspberry Pi is used as hardware for all the CAs and the TA. We implement a self-healing mesh network between all nodes using OpenLab IEEE 802.15.4 chips and Routing Protocol for Low-Power and Lossy Networks (RPL), and the data is secured by RSA/AES keys. Several tests have been conducted in real environments, inside and outside of Carleton University, to test the performance of this communication network in various obstacle settings. In this paper, we highlight the details behind the implementation of this IPv6-based smart grid communication system, the related challenges, and the proposed solutions.
2015-05-01
Ping Yi, Ting Zhu, Qingquan Zhang, Yue Wu, Jianhua Li.  2014.  A denial of service attack in advanced metering infrastructure network. Communications (ICC), 2014 IEEE International Conference on. :1029-1034.

Advanced Metering Infrastructure (AMI) is the core component in a smart grid that exhibits a highly complex network configuration. AMI shares information about consumption, outages, and electricity rates reliably and efficiently by bidirectional communication between smart meters and utilities. However, the numerous smart meters being connected through mesh networks open new opportunities for attackers to interfere with communications and compromise utilities assets or steal customers private information. In this paper, we present a new DoS attack, called puppet attack, which can result in denial of service in AMI network. The intruder can select any normal node as a puppet node and send attack packets to this puppet node. When the puppet node receives these attack packets, this node will be controlled by the attacker and flood more packets so as to exhaust the network communication bandwidth and node energy. Simulation results show that puppet attack is a serious and packet deliver rate goes down to 20%-10%.

Junguo Liao, Mingyan Wang.  2014.  A new dynamic updating key strategy based on EMSA in wireless mesh networks. Information and Communications Technologies (ICT 2014), 2014 International Conference on. :1-5.

In the security protocols of Efficient Mesh Security Association(EMSA), the key updating strategy is an effective method to ensure the security of communication. For the existing strategy of periodic automatic key updating, the PTK(Pairwise Transit Key) is updated through the complex 4-way handshake to produce each time. Once the update frequency of the PTK is faster, it will have a greater impact on throughput and delay of the network. On this basis, we propose a new strategy of dynamic key updating to ensure the safety and performance of wireless mesh networks. In the new strategy, mesh point(MP) and mesh authenticator(MA) negotiate a random function at the initial certification, and use the PTK which is generated by the 4-way handshake as the initial seed. When the PTK updating cycle comes, both sides generate the new keys using the random function, which do not have to generate a new PTK by complex 4-way handshake. The analysis of performance compared with existing strategies showed that the dynamic key updating strategy proposed in this paper have a larger increase in delay and throughput of the network.