Biblio
In recent years, the attacks on systems have increased and among such attack is Distributed Denial of Service (DDoS) attack. The path identifiers (PIDs) used for inter-domain routing are static, which makes it easier the attack easier. To address this vulnerability, this paper addresses the usage of Dynamic Path Identifiers (D-PIDs) for routing. The PID of inter-domain path connector is kept oblivious and changes dynamically, thus making it difficult to attack the system. The prototype designed with major components like client, server and router analyses the outcome of D-PID usage instead of PIDs. The results show that, DDoS attacks can be effectively prevented if Dynamic Path Identifiers (D-PIDs) are used instead of Static Path Identifiers (PIDs).
The convergence of access networks in the fifth-generation (5G) evolution promises multi-tier networking infrastructures for the successes of various applications realizing the Internet-of-Everything era. However, in this context, the support of a massive number of connected devices also opens great opportunities for attackers to exploit these devices in illegal actions against their victims, especially within the distributed denial-of-services (DDoS) attacks. Nowadays, DDoS prevention still remains an open issue in term of performance improvement although there is a significant number of existing solutions have been proposed in the literature. In this paper, we investigate the advances of multi-access edge computing (MAEC), which is considered as one of the most important emerging technologies in 5G networks, in order to provide an effective DDoS prevention solution (referred to be MAEC-X). The proposed MAEC-X architecture and mechanism are developed as well as proved its effectiveness against DDoS attacks through intensive security analysis.