Visible to the public Biblio

Filters: Keyword is image preprocessing  [Clear All Filters]
2022-03-08
Tian, Qian, Song, Qishun, Wang, Hongbo, Hu, Zhihong, Zhu, Siyu.  2021.  Verification Code Recognition Based on Convolutional Neural Network. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:1947—1950.

Verification code recognition system based on convolutional neural network. In order to strengthen the network security defense work, this paper proposes a novel verification code recognition system based on convolutional neural network. The system combines Internet technology and big data technology, combined with advanced captcha technology, can prevent hackers from brute force cracking behavior to a certain extent. In addition, the system combines convolutional neural network, which makes the verification code combine numbers and letters, which improves the complexity of the verification code and the security of the user account. Based on this, the system uses threshold segmentation method and projection positioning method to construct an 8-layer convolutional neural network model, which enhances the security of the verification code input link. The research results show that the system can enhance the complexity of captcha, improve the recognition rate of captcha, and improve the security of user accounting.

2021-03-29
Ozdemir, M. A., Elagoz, B., Soy, A. Alaybeyoglu, Akan, A..  2020.  Deep Learning Based Facial Emotion Recognition System. 2020 Medical Technologies Congress (TIPTEKNO). :1—4.

In this study, it was aimed to recognize the emotional state from facial images using the deep learning method. In the study, which was approved by the ethics committee, a custom data set was created using videos taken from 20 male and 20 female participants while simulating 7 different facial expressions (happy, sad, surprised, angry, disgusted, scared, and neutral). Firstly, obtained videos were divided into image frames, and then face images were segmented using the Haar library from image frames. The size of the custom data set obtained after the image preprocessing is more than 25 thousand images. The proposed convolutional neural network (CNN) architecture which is mimics of LeNet architecture has been trained with this custom dataset. According to the proposed CNN architecture experiment results, the training loss was found as 0.0115, the training accuracy was found as 99.62%, the validation loss was 0.0109, and the validation accuracy was 99.71%.

2020-08-28
Huang, Bai-Ruei, Lin, Chang Hong, Lee, Chia-Han.  2012.  Mobile augmented reality based on cloud computing. and Identification Anti-counterfeiting, Security. :1—5.
In this paper, we implemented a mobile augmented reality system based on cloud computing. This system uses a mobile device with a camera to capture images of book spines and sends processed features to the cloud. In the cloud, the features are compared with the database and the information of the best matched book would be sent back to the mobile device. The information will then be rendered on the display via augmented reality. In order to reduce the transmission cost, the mobile device is used to perform most of the image processing tasks, such as the preprocessing, resizing, corner detection, and augmented reality rendering. On the other hand, the cloud is used to realize routine but large quantity feature comparisons. Using the cloud as the database also makes the future extension much more easily. For our prototype system, we use an Android smart phone as our mobile device, and Chunghwa Telecoms hicloud as the cloud.
2020-06-19
Liu, Keng-Cheng, Hsu, Chen-Chien, Wang, Wei-Yen, Chiang, Hsin-Han.  2019.  Facial Expression Recognition Using Merged Convolution Neural Network. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :296—298.

In this paper, a merged convolution neural network (MCNN) is proposed to improve the accuracy and robustness of real-time facial expression recognition (FER). Although there are many ways to improve the performance of facial expression recognition, a revamp of the training framework and image preprocessing renders better results in applications. When the camera is capturing images at high speed, however, changes in image characteristics may occur at certain moments due to the influence of light and other factors. Such changes can result in incorrect recognition of human facial expression. To solve this problem, we propose a statistical method for recognition results obtained from previous images, instead of using the current recognition output. Experimental results show that the proposed method can satisfactorily recognize seven basic facial expressions in real time.

2019-12-30
Liu, Keng-Cheng, Hsu, Chen-Chien, Wang, Wei-Yen, Chiang, Hsin-Han.  2019.  Real-Time Facial Expression Recognition Based on CNN. 2019 International Conference on System Science and Engineering (ICSSE). :120–123.
In this paper, we propose a method for improving the robustness of real-time facial expression recognition. Although there are many ways to improve the accuracy of facial expression recognition, a revamp of the training framework and image preprocessing allow better results in applications. One existing problem is that when the camera is capturing images in high speed, changes in image characteristics may occur at certain moments due to the influence of light and other factors. Such changes can result in incorrect recognition of the human facial expression. To solve this problem for smooth system operation and maintenance of recognition speed, we take changes in image characteristics at high speed capturing into account. The proposed method does not use the immediate output for reference, but refers to the previous image for averaging to facilitate recognition. In this way, we are able to reduce interference by the characteristics of the images. The experimental results show that after adopting this method, overall robustness and accuracy of facial expression recognition have been greatly improved compared to those obtained by only the convolution neural network (CNN).