Visible to the public Biblio

Filters: Keyword is Vehicular fog computing  [Clear All Filters]
2023-07-21
Nazih, Ossama, Benamar, Nabil, Lamaazi, Hanane, Chaoui, Habiba.  2022.  Challenges and future directions for security and privacy in vehicular fog computing. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :693—699.
Cooperative Intelligent Transportation System (CITS) has been introduced recently to increase road safety, traffic efficiency, and to enable various infotainment and comfort applications and services. To this end, a bunch technologies have been deployed to maintain and promote ITS. In essence, ITS is composed of vehicles, roadside infrastructure, and the environment that includes pedestrians, and other entities. Recently, several solutions were suggested to handle with the challenges faced by the vehicular networks (VN) using future internet architectures. One of the promising solutions proposed recently is Vehicular Fog computing (VFC), an attractive solution that supports sensitive service requests considering factors such as latency, mobility, localization, and scalability. VFC also provides a virtual platform for real-time big data analytic using servers or vehicles as a fog infrastructure. This paper surveys the general fog computing (FC) concept, the VFC architectures, and the key characteristics of several intelligent computing applications. We mainly focus on trust and security challenges in VFC deployment and real-time BD analytic in vehicular environment. We identify the faced challenges and future research directions in VFC and we highlight the research gap that can be exploited by researchers and vehicular manufactures while designing a new secure VFC architecture.
2022-03-23
Benadla, Sarra, Merad-Boudia, Omar Rafik.  2021.  The Impact of Sybil Attacks on Vehicular Fog Networks. 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI). :1—6.
The Internet of Vehicles (IoV) is a network that considers vehicles as intelligent machines. They interact and communicate with each other to improve the performance and safety of traffic. IoV solves certain problems, but it has some issues such as response time, which prompted researchers to propose the integration of Fog Computing into vehicular networks. In Vehicular Fog Computing (VFC), the services are provided at the edge of the network to increase data rate and reduce response time. However, in order to satisfy network users, the security and privacy of sensitive data should be guaranteed. Using pseudonyms instead of real identities is one of the techniques considered to preserve the privacy of users, however, this can push malicious vehicles to exploit such a process and launch the Sybil attack by creating several pseudonyms in order to perform various malicious activities. In this paper, we describe the Sybil attack effects on VFC networks and compare them to those in conventional networks, as well as identify the various existing methods for detecting this attack and determine if they are applicable to VFC networks.
2019-12-30
Bousselham, Mhidi, Benamar, Nabil, Addaim, Adnane.  2019.  A new Security Mechanism for Vehicular Cloud Computing Using Fog Computing System. 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). :1–4.

Recently Vehicular Cloud Computing (VCC) has become an attractive solution that support vehicle's computing and storing service requests. This computing paradigm insures a reduced energy consumption and low traffic congestion. Additionally, VCC has emerged as a promising technology that provides a virtual platform for processing data using vehicles as infrastructures or centralized data servers. However, vehicles are deployed in open environments where they are vulnerable to various types of attacks. Furthermore, traditional cryptographic algorithms failed in insuring security once their keys compromised. In order to insure a secure vehicular platform, we introduce in this paper a new decoy technology DT and user behavior profiling (UBP) as an alternative solution to overcome data security, privacy and trust in vehicular cloud servers using a fog computing architecture. In the case of a malicious behavior, our mechanism shows a high efficiency by delivering decoy files in such a way making the intruder unable to differentiate between the original and decoy file.