Visible to the public Biblio

Filters: Keyword is Waste materials  [Clear All Filters]
2023-02-24
Goto, Ren, Matama, Kazushige, Nishiwaki, Chihiro, Naito, Katsuhiro.  2022.  Proposal of an extended CYPHONIC adapter supporting general nodes using virtual IPv6 addresses. 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE). :257—261.
The spread of the Internet of Things (IoT) and cloud services leads to a request for secure communication between devices, known as zero-trust security. The authors have been developing CYber PHysical Overlay Network over Internet Communication (CYPHONIC) to realize secure end-to-end communication among devices. A device requires installing the client program into the devices to realize secure communication over our overlay network. However, some devices refuse additional installation of external programs due to the limitation of system and hardware resources or the effect on system reliability. We proposed new technology, a CYPHONIC adapter, to support these devices. Currently, the CYPHONIC adapter supports only IPv4 virtual addresses and needs to be compatible with general devices that use IPv6. This paper proposes the dual-stack CYPHONIC adapter supporting IPv4/IPv6 virtual addresses for general devices. The prototype implementation shows that the general device can communicate over our overlay network using both IP versions through the proposed CYPHONIC adapter.
2023-02-03
Triyanto, Aripin, Sunardi, Ariyawan, Nurtiyanto, Woro Agus, Koiru Ihksanudin, Moch, Mardiansyah.  2022.  Security System In The Safe With The Personal Identification Method Of Number Identification With Modulo Arthmatic Patterns. 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED). :1–6.
The burglary of a safe in the city of Jombang, East Java, lost valuables belonging to the Cemerlang Multipurpose Trading Cooperative. Therefore, a security system tool was created in the safe that serves as a place to store valuables and important assets. Change the security system using the security system with a private unique method with modulo arithmetic pattern. The security system of the safe is designed in layers which are attached with the RFID tag by registering and then verifying it on the card. Entering the password on the card cannot be read or is not performed, then the system will refuse to open it. arduino mega type 256 components, RFID tag is attached to the RFID reader, only one validated passive tag can open access to the security system, namely number B9 20 E3 0F. Meanwhile, of the ten passwords entered, only three match the modulo arithmetic format and can open the security system, namely password numbers 22540, 51324 and 91032. The circuit system on the transistor in the solenoid driver circuit works after the safety system opens. The servo motor can rotate according to the input of the open 900 servo angle rotation program.
ISSN: 2767-7826
2020-04-03
Fattahi, Jaouhar, Mejri, Mohamed, Pricop, Emil.  2019.  On the Security of Cryptographic Protocols Using the Little Theorem of Witness Functions. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1—5.

In this paper, we show how practical the little theorem of witness functions is in detecting security flaws in some categories of cryptographic protocols. We convey a formal analysis of the Needham-Schroeder symmetric-key protocol in the theory of witness functions. We show how it helps to warn about a security vulnerability in a given step of this protocol where the value of security of a sensitive ticket in a sent message unexpectedly decreases compared with its value when received. This vulnerability may be exploited by an intruder to mount a replay attack as described by Denning and Sacco.

2019-12-30
Chen, Jing, Du, Ruiying.  2009.  Fault Tolerance and Security in Forwarding Packets Using Game Theory. 2009 International Conference on Multimedia Information Networking and Security. 2:534–537.
In self-organized wireless network, such as ad hoc network, sensor network or mesh network, nodes are independent individuals which have different benefit; Therefore, selfish nodes refuse to forward packets for other nodes in order to save energy which causes the network fault. At the same time, some nodes may be malicious, whose aim is to damage the network. In this paper, we analyze the cooperation stimulation and security in self-organized wireless networks under a game theoretic framework. We first analyze a four node wireless network in which nodes share the channel by relaying for others during its idle periods in order to help the other nodes, each node has to use a part of its available channel capacity. And then, the fault tolerance and security problem is modeled as a non-cooperative game in which each player maximizes its own utility function. The goal of the game is to maximize the utility function in the giving condition in order to get better network efficiency. At last, for characterizing the efficiency of Nash equilibria, we analyze the so called price of anarchy, as the ratio between the objective function at the worst Nash equilibrium and the optimal objective function. Our results show that the players can get the biggest payoff if they obey cooperation strategy.