Visible to the public Biblio

Filters: Keyword is arithmetic circuit homomorphic encryption  [Clear All Filters]
2020-06-08
Tan, Li Xin, Wee, Jing Wei Shannen, Chan, Jun Rong, Soh, Wei Jie, Yap, Chern Nam.  2019.  Integrate Dragonfly Key Exchange (IETF - RFC 7664) into Arithmetic Circuit Homomorphic Encryption. 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC). :85–851.
This is an extension of an ongoing research project on Fully Homomorphic Encryption. Arithmetic Circuit Homomorphic Encryption (ACHE) [1] was implemented based on (TFHE) Fast Fully Homomorphic Encryption over the Torus. Just like many Homomorphic Encryption methods, ACHE does not integrate with any authentication method. Thus, this was an issue that this paper attempts to resolve. This paper will focus on the implementation method of integrating RFC7664 [2] into ACHE. Next, the paper will further discuss latency incurred due to key generation, the latency of transmission of public and private keys. Last but not least, the paper will also discuss the key size generated and its significance.
2019-12-30
Kee, Ruitao, Sie, Jovan, Wong, Rhys, Yap, Chern Nam.  2019.  Arithmetic Circuit Homomorphic Encryption and Multiprocessing Enhancements. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–5.
This is a feasibility study on homomorphic encryption using the TFHE library [1] in daily computing using cloud services. A basic set of arithmetic operations namely - addition, subtraction, multiplication and division were created from the logic gates provide. This research peeks into the impact of logic gates on these operations such as latency of the gates and the operation itself. Multiprocessing enhancement were done for multiplication operation using MPI and OpenMP to reduce latency.