Biblio
Filters: Keyword is belief rule base [Clear All Filters]
Energy Efficiency Evaluation Based on QoS Parameter Specification for Cloud Systems. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :27–34.
.
2020. Energy efficiency evaluation (EEE) is a research difficulty in the field of cloud computing. The current research mainly considers the relevant energy efficiency indicators of cloud systems and weights the interrelationship between energy consumption, system performance and QoS requirements. However, it lacks a combination of subjective and objective, qualitative and quantitative evaluation method to accurately evaluate the energy efficiency of cloud systems. We propose a novel EEE method based on the QoS parameter specification for cloud systems (EEE-QoS). Firstly, it reduces the metric values that affect QoS requirements to the same dimension range and then establishes a belief rule base (BRB). The best-worst method is utilized to determine the initial weights of the premise attributes in the BRB model. Then, the BRB model parameters are optimized by the mean-square error, the activation weight is calculated, and the activation rules of the evidence reasoning algorithm are integrated to evaluate the belief of the conclusion. The quantitative and qualitative evaluation of the energy efficiency of cloud systems is realized. The experiments show that the proposed method can accurately and objectively evaluate the energy efficiency of cloud systems.
An Expert System Based on Belief Rule to Assess Bank Surveillance Security. 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET). :451–454.
.
2018. Surveillance is the monitoring of the behavior, activities or other changing information whereas security means the state of being protected from harmful activities. Nowadays proper surveillance security is considered as a challenging issue in the world and security has become a major concern from real life to virtual life. Tech-giants are implementing new solutions & techniques for better security assessment. This paper illustrates the design and implementation of a Belief Rule Based Expert System (BRBES) to overcome the uncertainty problems during bank security assessment. The proposed expert system has been developed based on generic Belief Rule Based (BRB) inference methodology using Evidential Reasoning algorithm (RIMER). Real-time security data has been taken from several banks of Bangladesh in conjunction with the expert's opinion to construct the knowledge base. This expert system provides more reliable and effective result under uncertainties which is better than any other traditional expert's prediction. Real life case studies were used for the validation of this system. Also, the outcome is compared with the real-life security system. Furthermore, the architectural design, implementation and utilization of an expert system to assess bank security under uncertainty are also discussed in this paper.