Visible to the public Biblio

Filters: Keyword is tunnel  [Clear All Filters]
2022-03-14
Romero Goyzueta, Christian Augusto, Cruz De La Cruz, Jose Emmanuel, Cahuana, Cristian Delgado.  2021.  VPNoT: End to End Encrypted Tunnel Based on OpenVPN and Raspberry Pi for IoT Security. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :1–5.
Internet of Things (IoT) devices use different types of media and protocols to communicate to Internet, but security is compromised since the devices are not using encryption, authentication and integrity. Virtual Private Network of Things (VPNoT) is a new technology designed to create end to end encrypted tunnels for IoT devices, in this case, the VPNoT device is based on OpenVPN that provides confidentiality and integrity, also based on Raspberry Pi as the hardware and Linux as the operating system, both provide connectivity using different types of media to access Internet and network management. IoT devices and sensors can be connected to the VPNoT device so an encrypted tunnel is created to an IoT Server. VPNoT device uses a profile generated by the server, then all devices form a virtual private network (VPN). VPNoT device can act like a router when necessary and this environment works for IPv6 and IPv4 with a great advantage that OpenVPN traverses NAT permitting private IoT servers be accessible to the VPN. The annual cost of the improvement is about \$455 USD per year for 10 VPNoT devices.
2020-01-13
Guanyu, Chen, Yunjie, Han, Chang, Li, Changrui, Lin, Degui, Fang, Xiaohui, Rong.  2019.  Data Acquisition Network and Application System Based on 6LoWPAN and IPv6 Transition Technology. 2019 IEEE 2nd International Conference on Electronics Technology (ICET). :78–83.
In recent years, IPv6 will gradually replace IPv4 with IPv4 address exhaustion and the rapid development of the Low-Power Wide-Area network (LPWAN) wireless communication technology. This paper proposes a data acquisition and application system based on 6LoWPAN and IPv6 transition technology. The system uses 6LoWPAN and 6to4 tunnel to realize integration of the internal sensor network and Internet to improve the adaptability of the gateway and reduce the average forwarding delay and packet loss rate of small data packet. Moreover, we design and implement the functions of device access management, multiservice data storage and affair data service by combining the C/S architecture with the actual uploaded river quality data. The system has the advantages of flexible networking, low power consumption, rich IPv6 address, high communication security, and strong reusability.