Biblio
Filters: Keyword is TCP/IP stack [Clear All Filters]
Experimental Evaluation of Named Data Networking (NDN) in Tactical Environments. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :43–48.
.
2019. Tactical edge networks represent a uniquely challenging environment from the communications perspective, due to their limited bandwidth and high node mobility. Several middleware communication solutions have been proposed to address those issues, adopting an evolutionary design approach that requires facing quite a few complications to provide applications with a suited network programming model while building on top of the TCP/IP stack. Information Centric Networking (ICN), instead, represents a revolutionary, clean slate approach that aims at replacing the entire TCP/IP stack with a new communication paradigm, better suited to cope with fluctuating channel conditions and network disruptions. This paper, stemmed from research conducted within NATO IST-161 RTG, investigates the effectiveness of Named Data Networking (NDN), the de facto standard implementation of ICN, in the context of tactical edge networks and its potential for adoption. We evaluated an NDN-based Blue Force Tracking (BFT) dissemination application within the Anglova scenario emulation environment, and found that NDN obtained better-than-expected results in terms of delivery ratio and latency, at the expense of a relatively high bandwidth consumption.
TCP/IP and ICN Networking Technologies for the Internet of Things: A Comparative Study. 2019 International Conference on Networking and Advanced Systems (ICNAS). :1–6.
.
2019. Interconnecting resource-constrained devices in the Internet of Things (IoT) is generally achieved via IP-based technologies such as 6LoWPAN, which rely on the adaptation of the TCP/IP stack to fit IoT requirements. Very recent researches suggest that the Information-Centric Networking (ICN) paradigm, which switches the way to do networking, by fetching data by names regardless of their location, would provide native support for the functionalities required by IoT applications. Indeed, ICN intrinsic features, such as caching, naming, packet level security and stateful forwarding, favor it as a promising approach in the IoT. This paper gives a qualitative comparative study between the two communication paradigms (TCP/IP and ICN), and discusses their support for IoT environments, with a focus on the required key features such as mobility, scalability, and security.