Biblio
Filters: Keyword is actuator attacker [Clear All Filters]
Supervisor Obfuscation Against Actuator Enablement Attack. 2019 18th European Control Conference (ECC). :1760–1765.
.
2019. In this paper, we propose and address the problem of supervisor obfuscation against actuator enablement attack, in a common setting where the actuator attacker can eavesdrop the control commands issued by the supervisor. We propose a method to obfuscate an (insecure) supervisor to make it resilient against actuator enablement attack in such a way that the behavior of the original closed-loop system is preserved. An additional feature of the obfuscated supervisor, if it exists, is that it has exactly the minimum number of states among the set of all the resilient and behavior-preserving supervisors. Our approach involves a simple combination of two basic ideas: 1) a formulation of the problem of computing behavior-preserving supervisors as the problem of computing separating finite state automata under controllability and observability constraints, which can be tackled by using SAT solvers, and 2) the use of a recently proposed technique for the verification of attackability in our setting, with a normality assumption imposed on both the actuator attackers and supervisors.
Synthesis of Supremal Successful Normal Actuator Attackers on Normal Supervisors. 2019 American Control Conference (ACC). :5614–5619.
.
2019. In this paper, we propose and develop an actuator attack model for discrete-event systems. We assume the actuator attacker partially observes the execution of the closed-loop system and eavesdrops the control commands issued by the supervisor. The attacker can modify each control command on a specified subset of attackable events. The goal of the actuator attacker is to remain covert until it can establish a successful attack and lead the attacked closed-loop system into generating certain damaging strings. We then present a characterization for the existence of a successful attacker and prove the existence of the supremal successful attacker, when both the supervisor and the attacker are normal. Finally, we present an algorithm to synthesize the supremal successful normal attackers.