Visible to the public Biblio

Filters: Keyword is Channel allocation  [Clear All Filters]
2022-12-02
Choi, Jong-Young, Park, Jiwoong, Lim, Sung-Hwa, Ko, Young-Bae.  2022.  A RSSI-Based Mesh Routing Protocol based IEEE 802.11p/WAVE for Smart Pole Networks. 2022 24th International Conference on Advanced Communication Technology (ICACT). :1—5.
This paper proposes a RSSI-based routing protocol for smart pole mesh networks equipped with multiple IEEE 802.11p/WAVE radios. In the IEEE 802.11p based multi-radio multi-channel environments, the performance of traditional mesh routing protocols is severely degraded because of metric measurement overhead. The periodic probe messages for measuring the quality of each channel incurs a large overhead due to the channel switching delay. To solve such an overhead problem, we introduce a routing metric that estimates expected transmission time and proposes a light-weight channel allocation algorithm based on RSSI value only. We evaluate the performance of the proposed solution through simulation experiments with NS-3. Simulation results show that it can improve the network performance in terms of latency and throughput, compared to the legacy WCETT routing scheme.
2021-03-15
Joykutty, A. M., Baranidharan, B..  2020.  Cognitive Radio Networks: Recent Advances in Spectrum Sensing Techniques and Security. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :878–884.
Wireless networks are very significant in the present world owing to their widespread use and its application in domains like disaster management, smart cities, IoT etc. A wireless network is made up of a group of wireless nodes that communicate with each other without using any formal infrastructure. The topology of the wireless network is not fixed and it can vary. The huge increase in the number of wireless devices is a challenge owing to the limited availability of wireless spectrum. Opportunistic spectrum access by Cognitive radio enables the efficient usage of limited spectrum resources. The unused channels assigned to the primary users may go waste in idle time. Cognitive radio systems will sense the unused channel space and assigns it temporarily for secondary users. This paper discusses about the recent trends in the two most important aspects of Cognitive radio namely spectrum sensing and security.
2020-05-08
Zhi-wen, Wang, Yang, Cheng.  2018.  Bandwidth Allocation Strategy of Networked Control System under Denial-of-Service Attack. 2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC). :49—55.

In this paper, security of networked control system (NCS) under denial of service (DoS) attack is considered. Different from the existing literatures from the perspective of control systems, this paper considers a novel method of dynamic allocation of network bandwidth for NCS under DoS attack. Firstly, time-constrained DoS attack and its impact on the communication channel of NCS are introduced. Secondly, details for the proposed dynamic bandwidth allocation structure are presented along with an implementation, which is a bandwidth allocation strategy based on error between current state and equilibrium state and available bandwidth. Finally, a numerical example is given to demonstrate the effectiveness of the proposed bandwidth allocation approach.

2017-12-20
Salameh, H. B., Almajali, S., Ayyash, M., Elgala, H..  2017.  Security-aware channel assignment in IoT-based cognitive radio networks for time-critical applications. 2017 Fourth International Conference on Software Defined Systems (SDS). :43–47.

Cognitive radio networks (CRNs) have a great potential in supporting time-critical data delivery among the Internet of Things (IoT) devices and for emerging applications such as smart cities. However, the unique characteristics of different technologies and shared radio operating environment can significantly impact network availability. Hence, in this paper, we study the channel assignment problem in time-critical IoT-based CRNs under proactive jamming attacks. Specifically, we propose a probabilistic spectrum assignment algorithm that aims at minimizing the packet invalidity ratio of each cognitive radio (CR) transmission subject to delay constrains. We exploit the statistical information of licensed users' activities, fading conditions, and jamming attacks over idle channels. Simulation results indicate that network performance can be significantly improved by using a security- availability- and quality-aware channel assignment that provides communicating CR pair with the most secured channel of the lowest invalidity ratio.

2015-05-05
Mendes, L.D.P., Rodrigues, J.J.P.C., Lloret, J., Sendra, S..  2014.  Cross-Layer Dynamic Admission Control for Cloud-Based Multimedia Sensor Networks. Systems Journal, IEEE. 8:235-246.

Cloud-based communications system is now widely used in many application fields such as medicine, security, environment protection, etc. Its use is being extended to the most demanding services like multimedia delivery. However, there are a lot of constraints when cloud-based sensor networks use the standard IEEE 802.15.3 or IEEE 802.15.4 technologies. This paper proposes a channel characterization scheme combined to a cross-layer admission control in dynamic cloud-based multimedia sensor networks to share the network resources among any two nodes. The analysis shows the behavior of two nodes using different network access technologies and the channel effects for each technology. Moreover, the existence of optimal node arrival rates in order to improve the usage of dynamic admission control when network resources are used is also shown. An extensive simulation study was performed to evaluate and validate the efficiency of the proposed dynamic admission control for cloud-based multimedia sensor networks.
 

2015-05-01
Avallone, S., Di Stasi, G..  2014.  WiMesh: A Tool for the Performance Evaluation of Multi-Radio Wireless Mesh Networks. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

In this paper we present WiMesh, a software tool we developed during the last ten years of research conducted in the field of multi-radio wireless mesh networks. WiMesh serves two main purposes: (i) to run different algorithms for the assignment of channels, transmission rate and power to the available network radios; (ii) to automatically setup and run ns-3 simulations based on the network configuration returned by such algorithms. WiMesh basically consists of three libraries and three corresponding utilities that allow to easily conduct experiments. All such utilities accept as input an XML configuration file where a number of options can be specified. WiMesh is freely available to the research community, with the purpose of easing the development of new algorithms and the verification of their performances.