Visible to the public Biblio

Filters: Keyword is Flooding Attacks  [Clear All Filters]
2021-02-03
Devi, B. T., Shitharth, S., Jabbar, M. A..  2020.  An Appraisal over Intrusion Detection Systems in Cloud Computing Security Attacks. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :722—727.

Cloud computing provides so many groundbreaking advantages over native computing servers like to improve capacity and decrease costs, but meanwhile, it carries many security issues also. In this paper, we find the feasible security attacks made about cloud computing, including Wrapping, Browser Malware-Injection and Flooding attacks, and also problems caused by accountability checking. We have also analyzed the honey pot attack and its procedural intrusion way into the system. This paper on overall deals with the most common security breaches in cloud computing and finally honey pot, in particular, to analyze its intrusion way. Our major scope is to do overall security, analyze in the cloud and then to take up with a particular attack to deal with granular level. Honey pot is the one such attack that is taken into account and its intrusion policies are analyzed. The specific honey pot algorithm is in the queue as the extension of this project in the future.

2020-10-29
Mintu, Singh, Gursharan, Malhi, Simarjit Singh, Mahajan, Makul, Batra, Salil, Bath, Ranbir Singh.  2019.  Anatomization of Detection and Performance Measures Techniques for Flooding Attacks using Routing Protocols in MANETs. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :160—167.
Mobile ad-hoc network (MANETS) is generally appropriate in different territories like military tactical network, educational, home and entertainment and emergency operations etc. The MANETSs are simply the disintegration and designing kind of system in this portable hubs coming up and out the system whenever. Because of decentralized creation of the network, security, routing and Standard of service are the three noteworthy issues. MANETSs are helpless against security attack in light of the decentralized validation. The mobile hubs can enter or out the system and at some point malicious hubs enter the system, which are capable to trigger different dynamic and inactive attack. The flooding attack is the dynamic sort of attack in which malicious hubs transfers flooding packets on the medium. Because of this, medium gets over-burden and packets drop may happen inside the system. This decreases the throughput and increased packet loss. In this paper we illustrated different techniques and proposed various methods responsible for flooding attack. Our commitment in this paper is that we have investigated various flooding attacks in MANETs, their detection techniques with performance measure parameters.
2020-05-29
HOU, RUI, Han, Min, Chen, Jing, Hu, Wenbin, Tan, Xiaobin, Luo, Jiangtao, Ma, Maode.  2019.  Theil-Based Countermeasure against Interest Flooding Attacks for Named Data Networks. IEEE Network. 33:116—121.

NDN has been widely regarded as a promising representation and implementation of information- centric networking (ICN) and serves as a potential candidate for the future Internet architecture. However, the security of NDN is threatened by a significant safety hazard known as an IFA, which is an evolution of DoS and distributed DoS attacks on IP-based networks. The IFA attackers can create numerous malicious interest packets into a named data network to quickly exhaust the bandwidth of communication channels and cache capacity of NDN routers, thereby seriously affecting the routers' ability to receive and forward packets for normal users. Accurate detection of the IFAs is the most critical issue in the design of a countermeasure. To the best of our knowledge, the existing IFA countermeasures still have limitations in terms of detection accuracy, especially for rapidly volatile attacks. This article proposes a TC to detect the distributions of normal and malicious interest packets in the NDN routers to further identify the IFA. The trace back method is used to prevent further attempts. The simulation results show the efficiency of the TC for mitigating the IFAs and its advantages over other typical IFA countermeasures.

2019-12-18
Mustapha, Hanan, Alghamdi, Ahmed M.  2018.  DDoS Attacks on the Internet of Things and Their Prevention Methods. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :4:1-4:5.

The Internet of Things (IoT) vulnerabilities provides an ideal target for botnets, making them a major contributor in the increased number of Distributed Denial of Service (DDoS) attacks. The increase in DDoS attacks has made it important to address the consequences it implies on the IoT industry being one of the major causes. The aim of this paper is to provide an analysis of the attempts to prevent DDoS attacks, mainly at a network level. The sensibility of these solutions is extracted from their impact in resolving IoT vulnerabilities. It is evident from this review that there is no perfect solution yet for IoT security, this field still has many opportunities for research and development.

2015-05-01
Arieta, F., Barabasz, L.T., Santos, A., Nogueira, M..  2014.  Mitigating Flooding Attacks on Mobility in Infrastructure-Based Vehicular Networks. Latin America Transactions, IEEE (Revista IEEE America Latina). 12:475-483.

Infrastructure-based Vehicular Networks can be applied in different social contexts, such as health care, transportation and entertainment. They can easily take advantage of the benefices provided by wireless mesh networks (WMNs) to mobility, since WMNs essentially support technological convergence and resilience, required for the effective operation of services and applications. However, infrastructure-based vehicular networks are prone to attacks such as ARP packets flooding that compromise mobility management and users' network access. Hence, this work proposes MIRF, a secure mobility scheme based on reputation and filtering to mitigate flooding attacks on mobility management. The efficiency of the MIRF scheme has been evaluated by simulations considering urban scenarios with and without attacks. Analyses show that it significantly improves the packet delivery ratio in scenarios with attacks, mitigating their intentional negative effects, as the reduction of malicious ARP requests. Furthermore, improvements have been observed in the number of handoffs on scenarios under attacks, being faster than scenarios without the scheme.