Visible to the public Biblio

Filters: Keyword is sequential model  [Clear All Filters]
2021-03-29
Al-Janabi, S. I. Ali, Al-Janabi, S. T. Faraj, Al-Khateeb, B..  2020.  Image Classification using Convolution Neural Network Based Hash Encoding and Particle Swarm Optimization. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). :1–5.
Image Retrieval (IR) has become one of the main problems facing computer society recently. To increase computing similarities between images, hashing approaches have become the focus of many programmers. Indeed, in the past few years, Deep Learning (DL) has been considered as a backbone for image analysis using Convolutional Neural Networks (CNNs). This paper aims to design and implement a high-performance image classifier that can be used in several applications such as intelligent vehicles, face recognition, marketing, and many others. This work considers experimentation to find the sequential model's best configuration for classifying images. The best performance has been obtained from two layers' architecture; the first layer consists of 128 nodes, and the second layer is composed of 32 nodes, where the accuracy reached up to 0.9012. The proposed classifier has been achieved using CNN and the data extracted from the CIFAR-10 dataset by the inception model, which are called the Transfer Values (TRVs). Indeed, the Particle Swarm Optimization (PSO) algorithm is used to reduce the TRVs. In this respect, the work focus is to reduce the TRVs to obtain high-performance image classifier models. Indeed, the PSO algorithm has been enhanced by using the crossover technique from genetic algorithms. This led to a reduction of the complexity of models in terms of the number of parameters used and the execution time.
2020-01-20
Yihunie, Fekadu, Abdelfattah, Eman, Regmi, Amish.  2019.  Applying Machine Learning to Anomaly-Based Intrusion Detection Systems. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–5.

The enormous growth of Internet-based traffic exposes corporate networks with a wide variety of vulnerabilities. Intrusive traffics are affecting the normal functionality of network's operation by consuming corporate resources and time. Efficient ways of identifying, protecting, and mitigating from intrusive incidents enhance productivity. As Intrusion Detection System (IDS) is hosted in the network and at the user machine level to oversee the malicious traffic in the network and at the individual computer, it is one of the critical components of a network and host security. Unsupervised anomaly traffic detection techniques are improving over time. This research aims to find an efficient classifier that detects anomaly traffic from NSL-KDD dataset with high accuracy level and minimal error rate by experimenting with five machine learning techniques. Five binary classifiers: Stochastic Gradient Decent, Random Forests, Logistic Regression, Support Vector Machine, and Sequential Model are tested and validated to produce the result. The outcome demonstrates that Random Forest Classifier outperforms the other four classifiers with and without applying the normalization process to the dataset.