Visible to the public Biblio

Filters: Keyword is robotic applications  [Clear All Filters]
2020-12-17
Zong, Y., Guo, Y., Chen, X..  2019.  Policy-Based Access Control for Robotic Applications. 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). :368—3685.

With the wide application of modern robots, more concerns have been raised on security and privacy of robotic systems and applications. Although the Robot Operating System (ROS) is commonly used on different robots, there have been few work considering the security aspects of ROS. As ROS does not employ even the basic permission control mechanism, applications can access any resources without limitation, which could result in equipment damage, harm to human, as well as privacy leakage. In this paper we propose an access control mechanism for ROS based on an extended policy-based access control (PBAC) model. Specifically, we extend ROS to add an additional node dedicated for access control so that it can provide user identity and permission management services. The proposed mechanism also allows the administrator to revoke a permission dynamically. We implemented the proposed method in ROS and demonstrated its applicability and performance through several case studies.

Mukhandi, M., Portugal, D., Pereira, S., Couceiro, M. S..  2019.  A novel solution for securing robot communications based on the MQTT protocol and ROS. 2019 IEEE/SICE International Symposium on System Integration (SII). :608—613.

With the growing use of the Robot Operating System (ROS), it can be argued that it has become a de-facto framework for developing robotic solutions. ROS is used to build robotic applications for industrial automation, home automation, medical and even automatic robotic surveillance. However, whenever ROS is utilized, security is one of the main concerns that needs to be addressed in order to ensure a secure network communication of robots. Cyber-attacks may hinder evolution and adaptation of most ROS-enabled robotic systems for real-world use over the Internet. Thus, it is important to address and prevent security threats associated with the use of ROS-enabled applications. In this paper, we propose a novel approach for securing ROS-enabled robotic system by integrating ROS with the Message Queuing Telemetry Transport (MQTT) protocol. We manage to secure robots' network communications by providing authentication and data encryption, therefore preventing man-in-the-middle and hijacking attacks. We also perform real-world experiments to assess how the performance of a ROS-enabled robotic surveillance system is affected by the proposed approach.

2020-04-13
Rivera, Sean, Lagraa, Sofiane, Nita-Rotaru, Cristina, Becker, Sheila, State, Radu.  2019.  ROS-Defender: SDN-Based Security Policy Enforcement for Robotic Applications. 2019 IEEE Security and Privacy Workshops (SPW). :114–119.
In this paper we propose ROS-Defender, a holistic approach to secure robotics systems, which integrates a Security Event Management System (SIEM), an intrusion prevention system (IPS) and a firewall for a robotic system. ROS-Defender combines anomaly detection systems at application (ROS) level and network level, with dynamic policy enforcement points using software defined networking (SDN) to provide protection against a large class of attacks. Although SIEMs, IPS, and firewall have been previously used to secure computer networks, ROSDefender is applying them for the specific use case of robotic systems, where security is in many cases an afterthought.
2020-01-20
Bauer, Sergei, Brunner, Martin, Schartner, Peter.  2019.  Lightweight Authentication for Low-End Control Units with Hardware Based Individual Keys. 2019 Third IEEE International Conference on Robotic Computing (IRC). :425–426.

In autonomous driving, security issues from robotic and automotive applications are converging toward each other. A novel approach for deriving secret keys using a lightweight cipher in the firmware of low-end control units is introduced. By evaluating the method on a typical low-end automotive platform, we demonstrate the reusability of the cipher for message authentication. The proposed solution counteracts a known security issue in the robotics and automotive domain.