Biblio
Filters: Keyword is memory corruption vulnerabilities [Clear All Filters]
STEROIDS for DOPed Applications: A Compiler for Automated Data-Oriented Programming. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :111–126.
.
2019. The wide-spread adoption of system defenses such as the randomization of code, stack, and heap raises the bar for code-reuse attacks. Thus, attackers utilize a scripting engine in target programs like a web browser to prepare the code-reuse chain, e.g., relocate gadget addresses or perform a just-in-time gadget search. However, many types of programs do not provide such an execution context that an attacker can use. Recent advances in data-oriented programming (DOP) explored an orthogonal way to abuse memory corruption vulnerabilities and demonstrated that an attacker can achieve Turing-complete computations without modifying code pointers in applications. As of now, constructing DOP exploits requires a lot of manual work-for every combination of application and payload anew. In this paper, we present novel techniques to automate the process of generating DOP exploits. We implemented a compiler called STEROIDS that leverages these techniques and compiles our high-level language SLANG into low-level DOP data structures driving malicious computations at run time. This enables an attacker to specify her intent in an application-and vulnerability-independent manner to maximize reusability. We demonstrate the effectiveness of our techniques and prototype implementation by specifying four programs of varying complexity in SLANG that calculate the Levenshtein distance, traverse a pointer chain to steal a private key, relocate a ROP chain, and perform a JIT-ROP attack. STEROIDS compiles each of those programs to low-level DOP data structures targeted at five different applications including GStreamer, Wireshark and ProFTPd, which have vastly different vulnerabilities and DOP instances. Ultimately, this shows that our compiler is versatile, can be used for both 32-bit and 64-bit applications, works across bug classes, and enables highly expressive attacks without conventional code-injection or code-reuse techniques in applications lacking a scripting engine.
FIoT: Detecting the Memory Corruption in Lightweight IoT Device Firmware. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :248–255.
.
2019. The IoT industry has developed rapidly in recent years, which has attracted the attention of security researchers. However, the researchers are hampered by the wide variety of IoT device operating systems and their hardware architectures. Especially for the lightweight IoT devices, many manufacturers do not provide the device firmware images, embedded firmware source code or even the develop documents. As a result, it hinders traditional static analysis and dynamic analysis techniques. In this paper, we propose a novel dynamic analysis framework, called FIoT, which aims at finding memory corruption vulnerabilities in lightweight IoT device firmware images. The key idea is dynamically run the binary code snippets through symbolic execution with carrying out a fuzzing test. Specifically, we generate code snippets through traversing the control-flow graph (CFG) in a backward manner. We improved the CFG recovery approach and backward slice approach for better performance. To reduce the influence of the binary firmware, FIoT leverages loading address determination analysis and library function identification approach. We have implemented a prototype of FIoT and conducted experiments. Our results show that FIoT can complete the Fuzzing test within 40 seconds in average. Considering 170 seconds for static analysis, FIoT can load and analyze a lightweight IoT firmware within 210 seconds in total. Furthermore, we illustrate the effectiveness of FIoT by applying it over 115 firmware images from 17 manufacturers. We have found 35 images exist memory corruptions, which are all zero-day vulnerabilities.