Visible to the public Biblio

Filters: Keyword is learning rate  [Clear All Filters]
2020-09-18
Ling, Mee Hong, Yau, Kok-Lim Alvin.  2019.  Can Reinforcement Learning Address Security Issues? an Investigation into a Clustering Scheme in Distributed Cognitive Radio Networks 2019 International Conference on Information Networking (ICOIN). :296—300.

This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.

2020-06-12
Chiba, Zouhair, Abghour, Noreddine, Moussaid, Khalid, Omri, Amina El, Rida, Mohamed.  2018.  A Hybrid Optimization Framework Based on Genetic Algorithm and Simulated Annealing Algorithm to Enhance Performance of Anomaly Network Intrusion Detection System Based on BP Neural Network. 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). :1—6.

Today, network security is a world hot topic in computer security and defense. Intrusions and attacks in network infrastructures lead mostly in huge financial losses, massive sensitive data leaks, thus decreasing efficiency, competitiveness and the quality of productivity of an organization. Network Intrusion Detection System (NIDS) is valuable tool for the defense-in-depth of computer networks. It is widely deployed in network architectures in order to monitor, to detect and eventually respond to any anomalous behavior and misuse which can threat confidentiality, integrity and availability of network resources and services. Thus, the presence of NIDS in an organization plays a vital part in attack mitigation, and it has become an integral part of a secure organization. In this paper, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel hybrid Framework (GASAA) based on improved Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA). GA is improved through an optimization strategy, namely Fitness Value Hashing (FVH), which reduce execution time, convergence time and save processing power. Experimental results on KDD CUP' 99 dataset show that our optimized ANIDS (Anomaly NIDS) based BPNN, called “ANIDS BPNN-GASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. In addition, improvement of GA through FVH has saved processing power and execution time. Thereby, our proposed IDS is very much suitable for network anomaly detection.

2020-01-21
Zhang, Jiange, Chen, Yue, Yang, Kuiwu, Zhao, Jian, Yan, Xincheng.  2019.  Insider Threat Detection Based on Adaptive Optimization DBN by Grid Search. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :173–175.

Aiming at the problem that one-dimensional parameter optimization in insider threat detection using deep learning will lead to unsatisfactory overall performance of the model, an insider threat detection method based on adaptive optimization DBN by grid search is designed. This method adaptively optimizes the learning rate and the network structure which form the two-dimensional grid, and adaptively selects a set of optimization parameters for threat detection, which optimizes the overall performance of the deep learning model. The experimental results show that the method has good adaptability. The learning rate of the deep belief net is optimized to 0.6, the network structure is optimized to 6 layers, and the threat detection rate is increased to 98.794%. The training efficiency and the threat detection rate of the deep belief net are improved.