Visible to the public Biblio

Filters: Keyword is biometric modality  [Clear All Filters]
2015-05-04
Yuxi Liu, Hatzinakos, D..  2014.  Human acoustic fingerprints: A novel biometric modality for mobile security. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :3784-3788.

Recently, the demand for more robust protection against unauthorized use of mobile devices has been rapidly growing. This paper presents a novel biometric modality Transient Evoked Otoacoustic Emission (TEOAE) for mobile security. Prior works have investigated TEOAE for biometrics in a setting where an individual is to be identified among a pre-enrolled identity gallery. However, this limits the applicability to mobile environment, where attacks in most cases are from imposters unknown to the system before. Therefore, we employ an unsupervised learning approach based on Autoencoder Neural Network to tackle such blind recognition problem. The learning model is trained upon a generic dataset and used to verify an individual in a random population. We also introduce the framework of mobile biometric system considering practical application. Experiments show the merits of the proposed method and system performance is further evaluated by cross-validation with an average EER 2.41% achieved.