Biblio
Filters: Keyword is industrial wireless network [Clear All Filters]
Physical Layer Security Authentication Based Wireless Industrial Communication System for Spoofing Detection. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
.
2022. Security is of vital importance in wireless industrial communication systems. When spoofing attacking has occurred, leading to economic losses or even safety accidents. So as to address the concern, existing approaches mainly rely on traditional cryptographic algorithms. However, these methods cannot meet the needs of short delay and lightweight. In this paper, we propose a CSI-based PHY-layer security authentication scheme to detect spoofing detection. The main idea takes advantage of the uncorrelated nature of wireless channels to the identification of spoofing nodes in the physical layer. We demonstrate a MIMO-OFDM based spoofing detection prototype in industrial environments. Firstly, utilizing Universal Software Radio Peripheral (USRPs) to establish MIMO-OFDM communication systems is presented. Secondly, our proposed security scheme of CSI-based PHY-layer authentication is demonstrated. Finally, the effectiveness of the proposed approach has been verified via attack experiments.
Secure and Fast Multiple Nodes Join Mechanism for IPv6-Based Industrial Wireless Network. 2019 International Conference on Information Networking (ICOIN). :1–6.
.
2019. More and more industrial devices are expected to connect to the internet seamlessly. IPv6-based industrial wireless network can solve the address resources limitation problem. It is a challenge about how to ensure the wireless node join security after introducing the IPv6. In this paper, we propose a multiple nodes join mechanism, which includes a timeslot allocation method and secure join process for the IPv6 over IEEE 802.15.4e network. The timeslot allocation method is designed in order to configure communication resources in the join process for the new nodes. The test platform is implemented to verify the feasibility of the mechanism. The result shows that the proposed mechanism can reduce the communication cost for multiple nodes join process and improve the efficiency.