Visible to the public Biblio

Filters: Keyword is Hydroelectric power generation  [Clear All Filters]
2021-08-31
Yang, Jian, Liu, Shoubao, Fang, Yuan, Xiong, Zhonghao, Li, Xin.  2020.  A simulation calculation method for suppressing the magnetizing inrush current in the setting of the overcurrent protection of the connecting transformer in the hydropower station. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :197–202.
In order to improve the reliability of power supply in adjacent hydropower stations, the auxiliary power systems of the two stations are connected through a contact transformer. The magnetizing inrush current generated by the connecting transformer of a hydropower station has the characteristics of high frequency, strong energy, and multi-coupling. The harm caused by the connecting transformer is huge. In order to prevent misoperation during the closing process of the connecting transformer, this article aims at the problem of setting the switching current of the connecting transformer of the two hydropower stations, and establishes the analysis model of the excitation inrush current with SimPowerSystem software, and carries out the quantitative simulation calculation of the excitation inrush current of the connecting transformer. A setting strategy for overcurrent protection of tie transformers to suppress the excitation inrush current is proposed. Under the conditions of changing switch closing time, generator load, auxiliary transformer load, tie transformer core remanence, the maximum amplitude of the excitation inrush current is comprehensively judged Value, and then achieve the suppression of the excitation inrush current, and accurately determine the protection setting of the switch.
2020-01-21
Dong, Xiao, Li, Qianmu, Hou, Jun, Zhang, Jing, Liu, Yaozong.  2019.  Security Risk Control of Water Power Generation Industrial Control Network Based on Attack and Defense Map. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService). :232–236.

With the latest development of hydroelectric power generation system, the industrial control network system of hydroelectric power generation has undergone the transformation from the dedicated network, using proprietary protocols to an increasingly open network, adopting standard protocols, and increasing integration with hydroelectric power generation system. It generally believed that with the improvement of the smart grid, the future hydroelectric power generation system will rely more on the powerful network system. The general application of standardized communication protocol and intelligent electronic equipment in industrial control network provides a technical guarantee for realizing the intellectualization of hydroelectric power generation system but also brings about the network security problems that cannot be ignored. In order to solve the vulnerability of the system, we analyze and quantitatively evaluate the industrial control network of hydropower generation as a whole, and propose a set of attack and defense strategies. The method of vulnerability assessment with high diversity score proposed by us avoids the indifference of different vulnerability score to the greatest extent. At the same time, we propose an optimal attack and defense decision algorithm, which generates the optimal attack and defense strategy. The work of this paper can distinguish the actual hazards of vulnerable points more effectively.