Visible to the public Biblio

Filters: Keyword is acoustic signal  [Clear All Filters]
2020-08-03
Zarazaga, Pablo Pérez, B¨ackström, Tom, Sigg, Stephan.  2019.  Robust and Responsive Acoustic Pairing of Devices Using Decorrelating Time-Frequency Modelling. 2019 27th European Signal Processing Conference (EUSIPCO). :1–5.
Voice user interfaces have increased in popularity, as they enable natural interaction with different applications using one's voice. To improve their usability and audio quality, several devices could interact to provide a unified voice user interface. However, with devices cooperating and sharing voice-related information, user privacy may be at risk. Therefore, access management rules that preserve user privacy are important. State-of-the-art methods for acoustic pairing of devices provide fingerprinting based on the time-frequency representation of the acoustic signal and error-correction. We propose to use such acoustic fingerprinting to authorise devices which are acoustically close. We aim to obtain fingerprints of ambient audio adapted to the requirements of voice user interfaces. Our experiments show that the responsiveness and robustness is improved by combining overlapping windows and decorrelating transforms.
2020-01-27
Persis, D. Jinil.  2019.  A Bi-objective Routing Model for Underwater Wireless Sensor Network. Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. :78–82.
Underwater wireless communication is a critical and challenging research area wherein acoustic signals are used to transfer data. The Underwater Wireless Sensor Network (UWSN) is used to transmit data sensed by the sensors in the sea bed to the surface sinks through intermediate nodes for seismic surveillance, border security and underwater environment monitoring applications. The nodes comprising of UWSN are battery operated and are subjected to failures leading to connectivity loss. And the propagation delay in sending the data in the form of acoustic signals is found to be high and as the depth increases the transmission delay also increases. Hence, routing in UWSN is a complex problem. The simulation experiments of the delay sensitive protocols are found to minimize the delay at the expense of network throughput which is not acceptable. The energy aware routing protocols on the other hand reduces energy consumption and routing overhead but has high delay involved in transmission. In this study, transmission delay and reliability estimation models are developed using which bi-objective routing model is proposed considering both delay and reliability in route selection. In the simulation studies, the bi-objective model reduced delay on an average by 9% and the reliability of the network is improved by 34% when compared to the delay sensitive and reliable routing strategies.