Visible to the public Biblio

Filters: Keyword is Cluster Supply Chain  [Clear All Filters]
2022-09-09
hong, Xue, zhifeng, Liao, yuan, Wang, ruidi, Xu, zhuoran, Xu.  2020.  Research on risk severity decision of cluster supply chain based on data flow fuzzy clustering. 2020 Chinese Control And Decision Conference (CCDC). :2810—2815.
Based on the analysis of cluster supply chain risk characteristics, starting from the analysis of technical risk dimensions, information risk dimensions, human risk dimensions, and capital risk dimensions, a cluster supply chain risk severity assessment index system is designed. The fuzzy C-means clustering algorithm based on data flow is used to cluster each supply chain, analyze the risk severity of the supply chain, and evaluate the decision of the supply chain risk severity level based on the cluster weights and cluster center range. Based on the analytic hierarchy process, the risk severity of the entire clustered supply chain is made an early warning decision, and the clustered supply chain risk severity early warning level is obtained. The results of simulation experiments verify the feasibility of the decision method for cluster supply chain risk severity, and improve the theoretical support for cluster supply chain risk severity prediction.
2020-01-27
Xue, Hong, Wang, Jingxuan, Zhang, Miao, Wu, Yue.  2019.  Emergency Severity Assessment Method for Cluster Supply Chain Based on Cloud Fuzzy Clustering Algorithm. 2019 Chinese Control Conference (CCC). :7108–7114.

Aiming at the composite uncertainty characteristics and high-dimensional data stream characteristics of the evaluation index with both ambiguity and randomness, this paper proposes a emergency severity assessment method for cluster supply chain based on cloud fuzzy clustering algorithm. The summary cloud model generation algorithm is created. And the multi-data fusion method is applied to the cloud model processing of the evaluation indexes for high-dimensional data stream with ambiguity and randomness. The synopsis data of the emergency severity assessment indexes are extracted. Based on time attenuation model and sliding window model, the data stream fuzzy clustering algorithm for emergency severity assessment is established. The evaluation results are rationally optimized according to the generalized Euclidean distances of the cluster centers and cluster microcluster weights, and the severity grade of cluster supply chain emergency is dynamically evaluated. The experimental results show that the proposed algorithm improves the clustering accuracy and reduces the operation time, as well as can provide more accurate theoretical support for the early warning decision of cluster supply chain emergency.