Visible to the public Biblio

Filters: Keyword is time attenuation model  [Clear All Filters]
2020-01-27
Xue, Hong, Wang, Jingxuan, Zhang, Miao, Wu, Yue.  2019.  Emergency Severity Assessment Method for Cluster Supply Chain Based on Cloud Fuzzy Clustering Algorithm. 2019 Chinese Control Conference (CCC). :7108–7114.

Aiming at the composite uncertainty characteristics and high-dimensional data stream characteristics of the evaluation index with both ambiguity and randomness, this paper proposes a emergency severity assessment method for cluster supply chain based on cloud fuzzy clustering algorithm. The summary cloud model generation algorithm is created. And the multi-data fusion method is applied to the cloud model processing of the evaluation indexes for high-dimensional data stream with ambiguity and randomness. The synopsis data of the emergency severity assessment indexes are extracted. Based on time attenuation model and sliding window model, the data stream fuzzy clustering algorithm for emergency severity assessment is established. The evaluation results are rationally optimized according to the generalized Euclidean distances of the cluster centers and cluster microcluster weights, and the severity grade of cluster supply chain emergency is dynamically evaluated. The experimental results show that the proposed algorithm improves the clustering accuracy and reduces the operation time, as well as can provide more accurate theoretical support for the early warning decision of cluster supply chain emergency.