Biblio
With the rapid development of Internet technology, the era of big data is coming. SQL injection attack is the most common and the most dangerous threat to database. This paper studies the working mode and workflow of the GreenSQL database firewall. Based on the analysis of the characteristics and patterns of SQL injection attack command, the input model of GreenSQL learning is optimized by constructing the patterned input and optimized whitelist. The research method can improve the learning efficiency of GreenSQL and intercept samples in IPS mode, so as to effectively maintain the security of background database.
Military communities have come to rely heavily on commercial off the shelf (COTS) standards and technologies for Internet of Things (IoT) operations. One of the major obstacles to military use of COTS IoT devices is the security of data transfer. In this paper, we successfully design and develop a lightweight, trust-based security architecture to support routing in a mobile IoT network. Specifically, we modify the RPL IoT routing algorithm using common security techniques, including a nonce identity value, timestamp, and network whitelist. Our approach allows RPL to select a routing path over a mobile IoT wireless network based on a computed node trust value and average received signal strength indicator (ARSSI) value across network members. We conducted simulations using the Cooja network simulator and Wireshark to validate the algorithm against stipulated threat models. We demonstrate that our algorithm can protect the network against Denial of Service (DoS) and Sybil based identity attacks. We also show that the control overhead required for our algorithm is less than 5% and that the packet delivery rate improves by nearly 10%.
Stealing confidential information from a database has become a severe vulnerability issue for web applications. The attacks can be prevented by defining a whitelist of SQL queries issued by web applications and detecting queries not in list. For large-scale web applications, automated generation of the whitelist is conducted because manually defining numerous query patterns is impractical for developers. Conventional methods for automated generation are unable to detect attacks immediately because of the long time required for collecting legitimate queries. Moreover, they require application-specific implementations that reduce the versatility of the methods. As described herein, we propose a method to generate a whitelist automatically using queries issued during web application tests. Our proposed method uses the queries generated during application tests. It is independent of specific applications, which yields improved timeliness against attacks and versatility for multiple applications.