Biblio
Modern industrial control systems (ICS) act as victims of cyber attacks more often in last years. These cyber attacks often can not be detected by classical information security methods. Moreover, the consequences of cyber attack's impact can be catastrophic. Since cyber attacks leads to appearance of anomalies in the ICS and technological equipment controlled by it, the task of intrusion detection for ICS can be reformulated as the task of industrial process anomaly detection. This paper considers the applicability of generative adversarial networks (GANs) in the field of industrial processes anomaly detection. Existing approaches for GANs usage in the field of information security (such as anomaly detection in network traffic) were described. It is proposed to use the BiGAN architecture in order to detect anomalies in the industrial processes. The proposed approach has been tested on Secure Water Treatment Dataset (SWaT). The obtained results indicate the prospects of using the examined method in practice.
Classifying Hyperspectral images with few training samples is a challenging problem. The generative adversarial networks (GAN) are promising techniques to address the problems. GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. In this paper, by introducing multilayer features fusion in GAN and a dynamic neighborhood voting mechanism, a novel algorithm for HSIs classification based on 1-D GAN was proposed. Extracting and fusing multiple layers features in discriminator, and using a little labeled samples, we fine-tuned a new sample 1-D CNN spectral classifier for HSIs. In order to improve the accuracy of the classification, we proposed a dynamic neighborhood voting mechanism to classify the HSIs with spatial features. The obtained results show that the proposed models provide competitive results compared to the state-of-the-art methods.