Visible to the public Biblio

Filters: Keyword is smell  [Clear All Filters]
2022-07-28
Ruohonen, Jukka, Hjerppe, Kalle, Rindell, Kalle.  2021.  A Large-Scale Security-Oriented Static Analysis of Python Packages in PyPI. 2021 18th International Conference on Privacy, Security and Trust (PST). :1—10.
Different security issues are a common problem for open source packages archived to and delivered through software ecosystems. These often manifest themselves as software weaknesses that may lead to concrete software vulnerabilities. This paper examines various security issues in Python packages with static analysis. The dataset is based on a snapshot of all packages stored to the Python Package Index (PyPI). In total, over 197 thousand packages and over 749 thousand security issues are covered. Even under the constraints imposed by static analysis, (a) the results indicate prevalence of security issues; at least one issue is present for about 46% of the Python packages. In terms of the issue types, (b) exception handling and different code injections have been the most common issues. The subprocess module stands out in this regard. Reflecting the generally small size of the packages, (c) software size metrics do not predict well the amount of issues revealed through static analysis. With these results and the accompanying discussion, the paper contributes to the field of large-scale empirical studies for better understanding security problems in software ecosystems.
2020-02-10
Rahman, Akond, Parnin, Chris, Williams, Laurie.  2019.  The Seven Sins: Security Smells in Infrastructure as Code Scripts. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). :164–175.

Practitioners use infrastructure as code (IaC) scripts to provision servers and development environments. While developing IaC scripts, practitioners may inadvertently introduce security smells. Security smells are recurring coding patterns that are indicative of security weakness and can potentially lead to security breaches. The goal of this paper is to help practitioners avoid insecure coding practices while developing infrastructure as code (IaC) scripts through an empirical study of security smells in IaC scripts. We apply qualitative analysis on 1,726 IaC scripts to identify seven security smells. Next, we implement and validate a static analysis tool called Security Linter for Infrastructure as Code scripts (SLIC) to identify the occurrence of each smell in 15,232 IaC scripts collected from 293 open source repositories. We identify 21,201 occurrences of security smells that include 1,326 occurrences of hard-coded passwords. We submitted bug reports for 1,000 randomly-selected security smell occurrences. We obtain 212 responses to these bug reports, of which 148 occurrences were accepted by the development teams to be fixed. We observe security smells can have a long lifetime, e.g., a hard-coded secret can persist for as long as 98 months, with a median lifetime of 20 months.