Visible to the public Biblio

Filters: Keyword is stego messages  [Clear All Filters]
2020-02-10
Sharifzadeh, Mehdi, Aloraini, Mohammed, Schonfeld, Dan.  2019.  Quantized Gaussian Embedding Steganography. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2637–2641.

In this paper, we develop a statistical framework for image steganography in which the cover and stego messages are modeled as multivariate Gaussian random variables. By minimizing the detection error of an optimal detector within the generalized adopted statistical model, we propose a novel Gaussian embedding method. Furthermore, we extend the formulation to cost-based steganography, resulting in a universal embedding scheme that works with embedding costs as well as variance estimators. Experimental results show that the proposed approach avoids embedding in smooth regions and significantly improves the security of the state-of-the-art methods, such as HILL, MiPOD, and S-UNIWARD.