Visible to the public Biblio

Filters: Keyword is Threshold voltage  [Clear All Filters]
2022-01-31
El-Allami, Rida, Marchisio, Alberto, Shafique, Muhammad, Alouani, Ihsen.  2021.  Securing Deep Spiking Neural Networks against Adversarial Attacks through Inherent Structural Parameters. 2021 Design, Automation Test in Europe Conference Exhibition (DATE). :774–779.
Deep Learning (DL) algorithms have gained popularity owing to their practical problem-solving capacity. However, they suffer from a serious integrity threat, i.e., their vulnerability to adversarial attacks. In the quest for DL trustworthiness, recent works claimed the inherent robustness of Spiking Neural Networks (SNNs) to these attacks, without considering the variability in their structural spiking parameters. This paper explores the security enhancement of SNNs through internal structural parameters. Specifically, we investigate the SNNs robustness to adversarial attacks with different values of the neuron's firing voltage thresholds and time window boundaries. We thoroughly study SNNs security under different adversarial attacks in the strong white-box setting, with different noise budgets and under variable spiking parameters. Our results show a significant impact of the structural parameters on the SNNs' security, and promising sweet spots can be reached to design trustworthy SNNs with 85% higher robustness than a traditional non-spiking DL system. To the best of our knowledge, this is the first work that investigates the impact of structural parameters on SNNs robustness to adversarial attacks. The proposed contributions and the experimental framework is available online 11https://github.com/rda-ela/SNN-Adversarial-Attacks to the community for reproducible research.
2021-05-13
Luo, Yukui, Gongye, Cheng, Ren, Shaolei, Fei, Yunsi, Xu, Xiaolin.  2020.  Stealthy-Shutdown: Practical Remote Power Attacks in Multi - Tenant FPGAs. 2020 IEEE 38th International Conference on Computer Design (ICCD). :545–552.
With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumption by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks.
2021-03-04
Riya, S. S., Lalu, V..  2020.  Stable cryptographic key generation using SRAM based Physical Unclonable Function. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :653—657.
Physical unclonable functions(PUFs) are widely used as hardware root-of-trust to secure IoT devices, data and services. A PUF exploits inherent randomness introduced during manufacturing to give a unique digital fingerprint. Static Random-Access Memory (SRAM) based PUFs can be used as a mature technology for authentication. An SRAM with a number of SRAM cells gives an unrepeatable and random pattern of 0's and 1's during power on. As it is a unique pattern, it can be called as SRAM fingerprint and can be used as a PUF. The chance of producing more number of same values (either zero or one) is higher during power on. If a particular value present at almost all the cell during power on, it will lead to the dominance of either zero or one in the cryptographic key sequence. As the cryptographic key is generated by randomly taking address location of SRAM cells, (the subset of power on values of all the SRAM cells)the probability of occurring the same sequence most of the time is higher. In order to avoid that situation, SRAM should have to produce an equal number of zeros and ones during power on. SRAM PUF is implemented in Cadence Virtuoso tool. To generate equal zeros and ones during power on, variations can be done in the physical dimensions and to increase the stability body biasing can be effectively done.
2020-11-16
Su, H., Halak, B., Zwolinski, M..  2019.  Two-Stage Architectures for Resilient Lightweight PUFs. 2019 IEEE 4th International Verification and Security Workshop (IVSW). :19–24.
The following topics are dealt with: Internet of Things; invasive software; security of data; program testing; reverse engineering; product codes; binary codes; decoding; maximum likelihood decoding; field programmable gate arrays.
2020-11-09
Rao, V. V., Savidis, I..  2019.  Mesh Based Obfuscation of Analog Circuit Properties. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
In this paper, a technique to design analog circuits with enhanced security is described. The proposed key based obfuscation technique uses a mesh topology to obfuscate the physical dimensions and the threshold voltage of the transistor. To mitigate the additional overhead of implementing the obfuscated circuitry, a satisfiability modulo theory (SMT) based algorithm is proposed to auto-determine the sizes of the transistors selected for obfuscation such that only a limited set of key values produce the correct circuit functionality. The proposed algorithm and the obfuscation methodology is implemented on an LC tank voltage-controlled oscillator (VCO). The operating frequency of the VCO is masked with a 24-bit encryption key applied to a 2×6 mesh structure that obfuscates the dimensions of each varactor transistor. The probability of determining the correct key is 5.96×10-8 through brute force attack. The dimensions of the obfuscated transistors determined by the analog satisfiability (aSAT) algorithm result in at least a 15%, 3%, and 13% deviation in, respectively, the effective transistor dimensions, target frequency, and voltage amplitude when an incorrect key is applied to the VCO. In addition, only one key produces the desired frequency and properly sets the overall performance specifications of the VCO. The simulated results indicate that the proposed design methodology, which quickly and accurately determines the transistor sizes for obfuscation, produces the target specifications and provides protection for analog circuits against IP piracy and reverse engineering.
2020-02-10
Tenentes, Vasileios, Das, Shidhartha, Rossi, Daniele, Al-Hashimi, Bashir M..  2019.  Run-time Detection and Mitigation of Power-Noise Viruses. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :275–280.
Power-noise viruses can be used as denial-of-service attacks by causing voltage emergencies in multi-core microprocessors that may lead to data corruptions and system crashes. In this paper, we present a run-time system for detecting and mitigating power-noise viruses. We present voltage noise data from a power-noise virus and benchmarks collected from an Arm multi-core processor, and we observe that the frequency of voltage emergencies is dramatically increasing during the execution of power-noise attacks. Based on this observation, we propose a regression model that allows for a run-time estimation of the severity of voltage emergencies by monitoring the frequency of voltage emergencies and the operating frequency of the microprocessor. For mitigating the problem, during the execution of critical tasks that require protection, we propose a system which periodically evaluates the severity of voltage emergencies and adapts its operating frequency in order to honour a predefined severity constraint. We demonstrate the efficacy of the proposed run-time system.