Visible to the public Biblio

Filters: Keyword is WiFi fingerprint localization  [Clear All Filters]
2021-08-17
Wu, Wenxiang, Fu, Shaojing, Luo, Yuchuan.  2020.  Practical Privacy Protection Scheme In WiFi Fingerprint-based Localization. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). :699—708.
The solution of using existing WiFi devices for measurement and maintenance, and establishing a WiFi fingerprint database for precise localization has become a popular method for indoor localization. The traditional WiFi fingerprint privacy protection scheme increases the calculation amount of the client, but cannot completely protect the security of the client and the fingerprint database. In this paper, we make use of WiFi devices to present a Practical Privacy Protection Scheme In WiFi Fingerprint-based Localization PPWFL. In PPWFL, the localization server establishes a pre-partition in the fingerprint database through the E-M clustering algorithm, we divide the entire fingerprint database into several partitions. The server uses WiFi fingerprint entries with partitions as training data and trains a machine learning model. This model can accurately predict the client's partition based on fingerprint entries. The client uses the trained machine learning model to obtain its partition location accurately, picks up WiFi fingerprint entries in its partition, and calculates its geographic location with the localization server through secure multi-party computing. Compared with the traditional solution, our solution only uses the WiFi fingerprint entries in the client's partition rather than the entire fingerprint database. PPWFL can reduce not only unnecessary calculations but also avoid accidental errors (Unexpected errors in fingerprint similarity between non-adjacent locations due to multipath effects of electromagnetic waves during the propagation of complex indoor environments) in fingerprint distance calculation. In particular, due to the use of Secure Multi-Party Computation, most of the calculations are performed in the local offline phase, the client only exchanges data with the localization server during the distance calculation phase. No additional equipment is needed; our solution uses only existing WiFi devices in the building to achieve fast localization based on privacy protection. We prove that PPWFL is secure under the honest but curious attacker. Experiments show that PPWFL achieves efficiency and accuracy than the traditional WiFi fingerprint localization scheme.
2015-05-04
Hongbo Liu, Jie Yang, Sidhom, S., Yan Wang, YingYing Chen, Fan Ye.  2014.  Accurate WiFi Based Localization for Smartphones Using Peer Assistance. Mobile Computing, IEEE Transactions on. 13:2199-2214.

Highly accurate indoor localization of smartphones is critical to enable novel location based features for users and businesses. In this paper, we first conduct an empirical investigation of the suitability of WiFi localization for this purpose. We find that although reasonable accuracy can be achieved, significant errors (e.g., 6 8m) always exist. The root cause is the existence of distinct locations with similar signatures, which is a fundamental limit of pure WiFi-based methods. Inspired by high densities of smartphones in public spaces, we propose a peer assisted localization approach to eliminate such large errors. It obtains accurate acoustic ranging estimates among peer phones, then maps their locations jointly against WiFi signature map subjecting to ranging constraints. We devise techniques for fast acoustic ranging among multiple phones and build a prototype. Experiments show that it can reduce the maximum and 80-percentile errors to as small as 2m and 1m, in time no longer than the original WiFi scanning, with negligible impact on battery lifetime.