Biblio
Recently, new perspective areas of chaotic encryption have evolved, including fuzzy logic encryption. The presented work proposes an image encryption system based on two chaotic mapping that uses fuzzy logic. The paper also presents numerical calculations of some parameters of statistical analysis, such as, histogram, entropy of information and correlation coefficient, which confirm the efficiency of the proposed algorithm.
MANET is vulnerable to so many attacks like Black hole, Wormhole, Jellyfish, Dos etc. Attackers can easily launch Wormhole attack by faking a route from original within network. In this paper, we propose an algorithm on AD (Absolute Deviation) of statistical approach to avoid and prevent Wormhole attack. Absolute deviation covariance and correlation take less time to detect Wormhole attack than classical one. Any extra necessary conditions, like GPS are not needed in proposed algorithms. From origin to destination, a fake tunnel is created by wormhole attackers, which is a link with good amount of frequency level. A false idea is created by this, that the source and destination of the path are very nearby each other and will take less time. But the original path takes more time. So it is necessary to calculate the time taken to avoid and prevent Wormhole attack. Better performance by absolute deviation technique than AODV is proved by simulation, done by MATLAB simulator for wormhole attack. Then the packet drop pattern is also measured for Wormholes using Absolute Deviation Correlation Coefficient.
More and more medical data are shared, which leads to disclosure of personal privacy information. Therefore, the construction of medical data privacy preserving publishing model is of great value: not only to make a non-correspondence between the released information and personal identity, but also to maintain the data utility after anonymity. However, there is an inherent contradiction between the anonymity and the data utility. In this paper, a Principal Component Analysis-Grey Relational Analysis (PCA-GRA) K anonymous algorithm is proposed to improve the data utility effectively under the premise of anonymity, in which the association between quasi-identifiers and the sensitive information is reckoned as a criterion to control the generalization hierarchy. Compared with the previous anonymity algorithms, results show that the proposed PCA-GRA K anonymous algorithm has achieved significant improvement in data utility from three aspects, namely information loss, feature maintenance and classification evaluation performance.
Security of sensible data for ultraconstrained IoT smart devices is one of the most challenging task in modern design. The needs of CPA-resistant cryptographic devices has to deal with the demanding requirements of small area and small impact on the overall power consumption. In this work, a novel current-mode feedback suppressor as on-chip analog-level CPA countermeasure is proposed. It aims to suppress differences in power consumption due to data-dependency of CMOS cryptographic devices, in order to counteract CPA attacks. The novel countermeasure is able to improve MTD of unprotected CMOS implementation of at least three orders of magnitude, providing a ×1.1 area and ×1.7 power overhead.
Present work deals with prediction of damage location in a composite cantilever beam using signal from optical fiber sensor coupled with a neural network with back propagation based learning mechanism. The experimental study uses glass/epoxy composite cantilever beam. Notch perpendicular to the axis of the beam and spanning throughout the width of the beam is introduced at three different locations viz. at the middle of the span, towards the free end of the beam and towards the fixed end of the beam. A plastic optical fiber of 6 cm gage length is mounted on the top surface of the beam along the axis of the beam exactly at the mid span. He-Ne laser is used as light source for the optical fiber and light emitting from other end of the fiber is converted to electrical signal through a converter. A three layer feed forward neural network architecture is adopted having one each input layer, hidden layer and output layer. Three features are extracted from the signal viz. resonance frequency, normalized amplitude and normalized area under resonance frequency. These three features act as inputs to the neural network input layer. The outputs qualitatively identify the location of the notch.
One way of evaluating the reusability of a test collection is to determine whether removing the unique contributions of some system would alter the preference order between that system and others. Rank correlation measures such as Kendall's tau are often used for this purpose. Rank correlation measures are appropriate for ordinal measures in which only preference order is important, but many evaluation measures produce system scores in which both the preference order and the magnitude of the score difference are important. Such measures are referred to as interval. Pearson's rho offers one way in which correlation can be computed over results from an interval measure such that smaller errors in the gap size are preferred. When seeking to improve over existing systems, we care the most about comparisons among the best systems. For that purpose we prefer head-weighed measures such as tau\_AP, which is designed for ordinal data. No present head weighted measure fully leverages the information present in interval effectiveness measures. This paper introduces such a measure, referred to as Pearson Rank.
This work presents a novel method to estimate natural expressed emotions in speech through binary acoustic modeling. Standard acoustic features are mapped to a binary value representation and a support vector regression model is used to correlate them with the three-continuous emotional dimensions. Three different sets of speech features, two based on spectral parameters and one on prosody are compared on the VAM corpus, a set of spontaneous dialogues from a German TV talk-show. The regression analysis, in terms of correlation coefficient and mean absolute error, show that the binary key modeling is able to successfully capture speaker emotion characteristics. The proposed algorithm obtains comparable results to those reported on the literature while it relies on a much smaller set of acoustic descriptors. Furthermore, we also report on preliminary results based on the combination of the binary models, which brings further performance improvements.