Visible to the public Biblio

Filters: Keyword is self-healing systems  [Clear All Filters]
2020-07-27
Liem, Clifford, Murdock, Dan, Williams, Andrew, Soukup, Martin.  2019.  Highly Available, Self-Defending, and Malicious Fault-Tolerant Systems for Automotive Cybersecurity. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :24–27.
With the growing number of electronic features in cars and their connections to the cloud, smartphones, road-side equipment, and neighboring cars the need for effective cybersecurity is paramount. Beyond the concern of brand degradation, warranty fraud, and recalls, what keeps manufacturers up at night is the threat of malicious attacks which can affect the safety of vehicles on the road. Would any single protection technique provide the security needed over the long lifetime of a vehicle? We present a new methodology for automotive cybersecurity where the designs are made to withstand attacks in the future based on the concepts of high availability and malicious fault-tolerance through self-defending techniques. When a system has an intrusion, self-defending technologies work to contain the breach using integrity verification, self-healing, and fail-over techniques to keep the system running.
2020-02-17
Maykot, Arthur S., Aranha Neto, Edison A. C., Oliva, Neimar A..  2019.  Automation of Manual Switches in Distribution Networks Focused on Self-Healing: A Step toward Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1–4.
This work describes the self-healing systems and their benefits in the power distribution networks, with the objective of indicating which manual switch should become, as a matter of priority, automatic. The computational tool used is based on graph theory, genetic algorithms and multicriteria evaluation. There are benefits for consumers, that will benefit from a more reliable and stable system, and for the utility, that can reduce costs with team field and financial compensations payed to consumers in case of continuity indexes violation. Data from a real distribution network from the state of Sao Paulo will be used as a case study for the application of the methodology.