Visible to the public Biblio

Filters: Keyword is network scenario  [Clear All Filters]
2021-03-09
Omprakash, S. H., Suthar, M. K..  2020.  Mitigation Technique for Black hole Attack in Mobile Ad hoc Network. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
Mobile Ad hoc Network is a very important key technology for device to device communication without any support of extra infrastructure. As it is being used as a mode of communication in various fields, protecting the network from various attacks becomes more important. In this research paper, we have created a real network scenario using random mobility of nodes and implemented Black hole Attack and Gray hole Attack, which degrades the performance of the network. In our research, we have found a novel mitigation technique which is efficient to mitigate both the attack from the network.
2020-02-17
Murudkar, Chetana V., Gitlin, Richard D..  2019.  QoE-Driven Anomaly Detection in Self-Organizing Mobile Networks Using Machine Learning. 2019 Wireless Telecommunications Symposium (WTS). :1–5.
Current procedures for anomaly detection in self-organizing mobile communication networks use network-centric approaches to identify dysfunctional serving nodes. In this paper, a user-centric approach and a novel methodology for anomaly detection is proposed, where the Quality of Experience (QoE) metric is used to evaluate the end-user experience. The system model demonstrates how dysfunctional serving eNodeBs are successfully detected by implementing a parametric QoE model using machine learning for prediction of user QoE in a network scenario created by the ns-3 network simulator. This approach can play a vital role in the future ultra-dense and green mobile communication networks that are expected to be both self- organizing and self-healing.