Biblio
Filters: Keyword is forensics tools [Clear All Filters]
Digital Forensics Analysis of Windows 11 Shellbag with Comparative Tools. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1–10.
.
2022. Operating systems have various components that produce artifacts. These artifacts are the outcome of a user’s interaction with an application or program and the operating system’s logging capabilities. Thus, these artifacts have great importance in digital forensics investigations. For example, these artifacts can be utilized in a court of law to prove the existence of compromising computer system behaviors. One such component of the Microsoft Windows operating system is Shellbag, which is an enticing source of digital evidence of high forensics interest. The presence of a Shellbag entry means a specific user has visited a particular folder and done some customizations such as accessing, sorting, resizing the window, etc. In this work, we forensically analyze Shellbag as we talk about its purpose, types, and specificity with the latest version of the Windows 11 operating system and uncover the registry hives that contain Shellbag customization information. We also conduct in-depth forensics examinations on Shellbag entries using three tools of three different types, i.e., open-source, freeware, and proprietary tools. Lastly, we compared the capabilities of tools utilized in Shellbag forensics investigations.
The Comparison of Web History Forensic Tools with ISO and NIST Standards. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :1–4.
.
2022. Nowadays, the number of new websites in Thailand has been increasing every year. However, there is a lack of security on some of those websites which causes negative effects and damage. This has also resulted in numerous violations. As a result, these violations cause delays in the situation analysis. Additionally, the cost of effective and well-established digital forensics tools is still expensive. Therefore, this paper has presented the idea of using freeware digital forensics tools to test their performances and compare them with the standards of the digital forensics process. The results of the paper suggest that the tested tools have significant differences in functions and process. WEFA Web Forensics tool is the most effective tool as it supports 3 standards up to 8 out of 10 processes, followed by Browser History View which supports 7 processes, Browser History Spy and Browser Forensic Web Tool respectively, supports 5 processes. The Internet history Browser supports 4 processes as compared to the basic process of the standardization related to forensics.
Maritime Situational Awareness Forensics Tools for a Common Information Sharing Environment (CISE). 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). :1–5.
.
2019. CISE stands for Common Information Sharing Environment and refers to an architecture and set of protocols, procedures and services for the exchange of data and information across Maritime Authorities of EU (European Union) Member States (MS's). In the context of enabling the implementation and adoption of CISE by different MS's, EU has funded a number of projects that enable the development of subsystems and adaptors intended to allow MS's to connect and make use of CISE. In this context, the Integrated Systems Laboratory (ISL) has led the development of the corresponding Hellenic and Cypriot CISE by developing a Control, Command & Information (C2I) system that unifies all partial maritime surveillance systems into one National Situational Picture Management (NSPM) system, and adaptors that allow the interconnection of the corresponding national legacy systems to CISE and the exchange of data, information and requests between the two MS's. Furthermore, a set of forensics tools that allow geospatial & time filtering and detection of anomalies, risk incidents, fake MMSIs, suspicious speed changes, collision paths, and gaps in AIS (Automatic Identification System), have been developed by combining motion models, AI, deep learning and fusion algorithms using data from different databases through CISE. This paper briefly discusses these developments within the EU CISE-2020, Hellenic CISE and CY-CISE projects and the benefits from the sharing of maritime data across CISE for both maritime surveillance and security. The prospect of using CISE for the creation of a considerably rich database that could be used for forensics analysis and detection of suspicious maritime traffic and maritime surveillance is discussed.