Visible to the public Biblio

Filters: Keyword is Membership-Inference  [Clear All Filters]
2021-12-20
Nasr, Milad, Songi, Shuang, Thakurta, Abhradeep, Papemoti, Nicolas, Carlin, Nicholas.  2021.  Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning. 2021 IEEE Symposium on Security and Privacy (SP). :866–882.
Differentially private (DP) machine learning allows us to train models on private data while limiting data leakage. DP formalizes this data leakage through a cryptographic game, where an adversary must predict if a model was trained on a dataset D, or a dataset D′ that differs in just one example. If observing the training algorithm does not meaningfully increase the adversary's odds of successfully guessing which dataset the model was trained on, then the algorithm is said to be differentially private. Hence, the purpose of privacy analysis is to upper bound the probability that any adversary could successfully guess which dataset the model was trained on.In our paper, we instantiate this hypothetical adversary in order to establish lower bounds on the probability that this distinguishing game can be won. We use this adversary to evaluate the importance of the adversary capabilities allowed in the privacy analysis of DP training algorithms.For DP-SGD, the most common method for training neural networks with differential privacy, our lower bounds are tight and match the theoretical upper bound. This implies that in order to prove better upper bounds, it will be necessary to make use of additional assumptions. Fortunately, we find that our attacks are significantly weaker when additional (realistic) restrictions are put in place on the adversary's capabilities. Thus, in the practical setting common to many real-world deployments, there is a gap between our lower bounds and the upper bounds provided by the analysis: differential privacy is conservative and adversaries may not be able to leak as much information as suggested by the theoretical bound.
2020-02-18
Nasr, Milad, Shokri, Reza, Houmansadr, Amir.  2019.  Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-Box Inference Attacks against Centralized and Federated Learning. 2019 IEEE Symposium on Security and Privacy (SP). :739–753.

Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge. We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing state-of-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.