Biblio
Mobile systems are always growing, automatically they need enough resources to secure them. Indeed, traditional techniques for protecting the mobile environment are no longer effective. We need to look for new mechanisms to protect the mobile environment from malicious behavior. In this paper, we examine one of the most popular systems, Android OS. Next, we will propose a distributed architecture based on IDS-AM to detect intrusions by mobile agents (IDS-AM).
Smartphones have evolved over the years from simple devices to communicate with each other to fully functional portable computers although with comparatively less computational power but inholding multiple applications within. With the smartphone revolution, the value of personal data has increased. As technological complexities increase, so do the vulnerabilities in the system. Smartphones are the latest target for attacks. Android being an open source platform and also the most widely used smartphone OS draws the attention of many malware writers to exploit the vulnerabilities of it. Attackers try to take advantage of these vulnerabilities and fool the user and misuse their data. Malwares have come a long way from simple worms to sophisticated DDOS using Botnets, the latest trends in computer malware tend to go in the distributed direction, to evade the multiple anti-virus apps developed to counter generic viruses and Trojans. However, the recent trend in android system is to have a combination of applications which acts as malware. The applications are benign individually but when grouped, these may result into a malicious activity. This paper proposes a new category of distributed malware in android system, how it can be used to evade the current security, and how it can be detected with the help of graph matching algorithm.
To resolve the more and more serious problems of sensitive data leakage from Android systems, a kind of method of data protection on encryption storage and encryption transmission is presented in this paper by adopting secure computation environment of SDKEY device. Firstly, a dual-authentication scheme for login using SDKEY and PIN is designed. It is used for login on system boot and lock screen. Secondly, an approach on SDKEY-based transparent encryption storage for different kinds of data files is presented, and a more fine-grained encryption scheme for different file types is proposed. Finally, a method of encryption transmission between Android phones is presented, and two kinds of key exchange mechanisms are designed for next encryption and decryption operation in the following. One is a zero-key exchange and another is a public key exchange. In this paper, a prototype system based on the above solution has been developed, and its security and performance are both analyzed and verified from several aspects.