Visible to the public Biblio

Filters: Keyword is packet flows  [Clear All Filters]
2021-01-11
Saleh, I., Ji, H..  2020.  Network Traffic Images: A Deep Learning Approach to the Challenge of Internet Traffic Classification. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0329–0334.
The challenge of network traffic classification exists at the heart of many networking related tasks aimed at improving the overall user experience and usability of the internet. Current techniques, such as deep packet inspection, depend heavily on interaction by network administrators and engineers to maintain up to date stores of application network signatures and the infrastructure required to utilize them effectively. In this paper, we introduce Network Traffic Images, a 2-dimensional (2D) formulation of a stream of packet header lengths, which enable us to employ deep convolutional neural networks for network traffic classification. Five different network traffic image orientation mappings are carefully designed to deduce the best way to transform the 1-dimensional packet-subflow into a 2D image. Two different mapping strategies, one packet-relative and the other time-relative, are experimented with to map the packets of a packet flow to the pixels in the image. Experiments shows that high classification accuracy can be achieved with minimal manual effort using network traffic images in deep learning.
2020-02-26
Nowak, Mateusz, Nowak, Sławomir, Domańska, Joanna.  2019.  Cognitive Routing for Improvement of IoT Security. 2019 IEEE International Conference on Fog Computing (ICFC). :41–46.

Internet of Things is nowadays growing faster than ever before. Operators are planning or already creating dedicated networks for this type of devices. There is a need to create dedicated solutions for this type of network, especially solutions related to information security. In this article we present a mechanism of security-aware routing, which takes into account the evaluation of trust in devices and packet flows. We use trust relationships between flows and network nodes to create secure SDN paths, not ignoring also QoS and energy criteria. The system uses SDN infrastructure, enriched with Cognitive Packet Networks (CPN) mechanisms. Routing decisions are made by Random Neural Networks, trained with data fetched with Cognitive Packets. The proposed network architecture, implementing the security-by-design concept, was designed and is being implemented within the SerIoT project to demonstrate secure networks for the Internet of Things (IoT).