Visible to the public Biblio

Filters: Keyword is Random Neural Networks  [Clear All Filters]
2021-05-03
Gelenbe, Erol.  2020.  Machine Learning for Network Routing. 2020 9th Mediterranean Conference on Embedded Computing (MECO). :1–1.
Though currently a “hot topic”, over the past fifteen years [1][2], there has been significant work on the use of machine learning to design large scale computer-communication networks, motivated by the complexity of the systems that are being considered and the unpredictability of their workloads. A topic of great concern has been security [3] and novel techniques for detecting network attacks have been developed based on Machine Learning [8]. However the main challenge with Machine Learning methods in networks has concerned their compatibility with the Internet Protocol and with legacy systems, and a major step forward has come from the establishment of Software Defined Networks (SDN) [4] which delegate network routing to specific SDN routers [4]. SDN has become an industry standard for concentrating network management and routing decisions within specific SDN routers that download the selected paths periodically to network routers, which operate otherwise under the IP protocol. In this paper we describe our work on real-time control of Security and Privacy [7], Energy Consumption and QoS [6] of packet networks using Machine Learning based on the Cognitive Packet Network [9] principles and their application to the H2020 SerIoT Project [5].
2020-02-26
Nowak, Mateusz, Nowak, Sławomir, Domańska, Joanna.  2019.  Cognitive Routing for Improvement of IoT Security. 2019 IEEE International Conference on Fog Computing (ICFC). :41–46.

Internet of Things is nowadays growing faster than ever before. Operators are planning or already creating dedicated networks for this type of devices. There is a need to create dedicated solutions for this type of network, especially solutions related to information security. In this article we present a mechanism of security-aware routing, which takes into account the evaluation of trust in devices and packet flows. We use trust relationships between flows and network nodes to create secure SDN paths, not ignoring also QoS and energy criteria. The system uses SDN infrastructure, enriched with Cognitive Packet Networks (CPN) mechanisms. Routing decisions are made by Random Neural Networks, trained with data fetched with Cognitive Packets. The proposed network architecture, implementing the security-by-design concept, was designed and is being implemented within the SerIoT project to demonstrate secure networks for the Internet of Things (IoT).