Visible to the public Biblio

Filters: Keyword is hardware Trojan horses  [Clear All Filters]
2021-11-08
Gayatri, R, Gayatri, Yendamury.  2020.  Detection of Trojan Based DoS Attacks on RSA Cryptosystem Using Hybrid Supervised Learning Models. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :1–5.
Privacy and security have become the most important aspects in any sphere of technology today from embedded systems to VLS I circuits. One such an attack compromising the privacy, security and trust of a networked control system by making them vulnerable to unauthorized access is the Hardware Trojan Horses. Even cryptographic algorithms whose purpose is to safeguard information are susceptible to these Trojan attacks. This paper discusses hybrid supervised machine learning models that predict with great accuracy whether the RSA asymmetric cryptosystem implemented in Atmel XMega microcontroller is Trojan-free (Golden) or Trojan-infected by analyzing the power profiles of the golden algorithm and trojan-infected algorithm. The power profiles are obtained using the ChipWhisperer Lite Board. The features selected from the power profiles are used to create datasets for the proposed hybrid models and train the proposed models using the 70/30 rule. The proposed hybrid models can be concluded that it has an accuracy of more than 88% irrespective of the Trojan types and size of the datasets.
2020-02-26
Danger, Jean-Luc, Fribourg, Laurent, Kühne, Ulrich, Naceur, Maha.  2019.  LAOCOÖN: A Run-Time Monitoring and Verification Approach for Hardware Trojan Detection. 2019 22nd Euromicro Conference on Digital System Design (DSD). :269–276.

Hardware Trojan Horses and active fault attacks are a threat to the safety and security of electronic systems. By such manipulations, an attacker can extract sensitive information or disturb the functionality of a device. Therefore, several protections against malicious inclusions have been devised in recent years. A prominent technique to detect abnormal behavior in the field is run-time verification. It relies on dedicated monitoring circuits and on verification rules generated from a set of temporal properties. An important question when dealing with such protections is the effectiveness of the protection against unknown attacks. In this paper, we present a methodology based on automatic generation of monitoring and formal verification techniques that can be used to validate and analyze the quality of a set of temporal properties when used as protection against generic attackers of variable strengths.