Biblio
Malware is any software that causes harm to the user information, computer systems or network. Modern computing and internet systems are facing increase in malware threats from the internet. It is observed that different malware follows the same patterns in their structure with minimal alterations. The type of threats has evolved, from file-based malware to fileless malware, such kind of threats are also known as Advance Volatile Threat (AVT). Fileless malware is complex and evasive, exploiting pre-installed trusted programs to infiltrate information with its malicious intent. Fileless malware is designed to run in system memory with a very small footprint, leaving no artifacts on physical hard drives. Traditional antivirus signatures and heuristic analysis are unable to detect this kind of malware due to its sophisticated and evasive nature. This paper provides information relating to detection, mitigation and analysis for such kind of threat.
The difficult of detecting, response, tracing the malicious behavior in cloud has brought great challenges to the law enforcement in combating cybercrimes. This paper presents a malicious behavior oriented framework of detection, emergency response, traceability, and digital forensics in cloud environment. A cloud-based malicious behavior detection mechanism based on SDN is constructed, which implements full-traffic flow detection technology and malicious virtual machine detection based on memory analysis. The emergency response and traceability module can clarify the types of the malicious behavior and the impacts of the events, and locate the source of the event. The key nodes and paths of the infection topology or propagation path of the malicious behavior will be located security measure will be dispatched timely. The proposed IaaS service based forensics module realized the virtualization facility memory evidence extraction and analysis techniques, which can solve volatile data loss problems that often happened in traditional forensic methods.
As recently shown in 2013, Android-driven smartphones and tablet PCs are vulnerable to so-called cold boot attacks. With physical access to an Android device, forensic memory dumps can be acquired with tools like FROST that exploit the remanence effect of DRAM to read out what is left in memory after a short reboot. While FROST can in some configurations be deployed to break full disk encryption, encrypted user partitions are usually wiped during a cold boot attack, such that a post-mortem analysis of main memory remains the only source of digital evidence. Therefore, we provide an in-depth analysis of Android's memory structures for system and application level memory. To leverage FROST in the digital investigation process of Android cases, we provide open-source Volatility plugins to support an automated analysis and extraction of selected Dalvik VM memory structures.