Visible to the public Biblio

Filters: Keyword is Radio Access Network  [Clear All Filters]
2021-02-16
Shi, Y., Sagduyu, Y. E., Erpek, T..  2020.  Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
2020-04-03
Perveen, Abida, Patwary, Mohammad, Aneiba, Adel.  2019.  Dynamically Reconfigurable Slice Allocation and Admission Control within 5G Wireless Networks. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). :1—7.
Serving heterogeneous traffic demand requires efficient resource utilization to deliver the promises of 5G wireless network towards enhanced mobile broadband, massive machine type communication and ultra-reliable low-latency communication. In this paper, an integrated user application-specific demand characteristics as well as network characteristics evaluation based online slice allocation model for 5G wireless network is proposed. Such characteristics include, available bandwidth, power, quality of service demand, service priority, security sensitivity, network load, predictive load etc. A degree of intra-slice resource sharing elasticity has been considered based on their availability. The availability has been assessed based on the current availability as well as forecasted availability. On the basis of application characteristics, an admission control strategy has been proposed. An interactive AMF (Access and Mobility Function)- RAN (Radio Access Network) information exchange has been assumed. A cost function has been derived to quantify resource allocation decision metric that is valid for both static and dynamic nature of user and network characteristics. A dynamic intra-slice decision boundary estimation model has been proposed. A set of analytical comparative results have been attained in comparison to the results available in the literature. The results suggest the proposed resource allocation framework performance is superior to the existing results in the context of network utility, mean delay and network grade of service, while providing similar throughput. The superiority reported is due to soft nature of the decision metric while reconfiguring slice resource block-size and boundaries.
2020-03-02
Ranaweera, Pasika, Jurcut, Anca Delia, Liyanage, Madhusanka.  2019.  Realizing Multi-Access Edge Computing Feasibility: Security Perspective. 2019 IEEE Conference on Standards for Communications and Networking (CSCN). :1–7.
Internet of Things (IoT) and 5G are emerging technologies that prompt a mobile service platform capable of provisioning billions of communication devices which enable ubiquitous computing and ambient intelligence. These novel approaches are guaranteeing gigabit-level bandwidth, ultra-low latency and ultra-high storage capacity for their subscribers. To achieve these limitations, ETSI has introduced the paradigm of Multi-Access Edge Computing (MEC) for creating efficient data processing architecture extending the cloud computing capabilities in the Radio Access Network (RAN). Despite the gained enhancements to the mobile network, MEC is subjected to security challenges raised from the heterogeneity of IoT services, intricacies in integrating virtualization technologies, and maintaining the performance guarantees of the mobile networks (i.e. 5G). In this paper, we are identifying the probable threat vectors in a typical MEC deployment scenario that comply with the ETSI standards. We analyse the identified threat vectors and propose solutions to mitigate them.