Biblio
This paper investigates the suitability of employing various measurable features derived from multiple wearable devices (Apple Watch), for the generation of unique authentication and encryption keys related to the user. This technique is termed as ICMetrics. The ICMetrics technology requires identifying the suitable features in an environment for key generation most useful for online services. This paper presents an evaluation of the feasibility of identifying a unique user based on desirable feature set and activity data collected over short and long term and explores how the number of samples being factored into the ICMetrics system affects uniqueness of the key.
As web-server spoofing is increasing, we investigate a novel technology termed ICmetrics, used to identify fraud for given software/hardware programs based on measurable quantities/features. ICmetrics technology is based on extracting features from digital systems' operation that may be integrated together to generate unique identifiers for each of the systems or create unique profiles that describe the systems' actual behavior. This paper looks at the properties of the several behaviors as a potential ICmetrics features to identify android apps, it presents several quality features which meet the ICmetrics requirements and can be used for encryption key generation. Finally, the paper identifies four android apps and verifies the use of ICmetrics by identifying a spoofed app as a different app altogether.