Visible to the public Biblio

Filters: Keyword is Dijkstra's algorithm  [Clear All Filters]
2021-11-29
Nair, Devika S, BJ, Santhosh Kumar.  2021.  Identifying Rank Attacks and Alert Application in WSN. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :798–802.
Routing protocol for low power and lossy networks (RPL) is a fundamental routing protocol of 6LoWPAN, a centre correspondence standard for the Internet of Things. RPL outplay other wireless sensor and ad hoc routing protocols in the aspect of service (QoS), device management, and energy-saving performance. The Rank definition in RPL addresses several issues, such as path optimization, loop avoidance, and power overhead management. RPL rank and version number attacks are two types of the most common forms of RPL attacks, may have crucial ramification for RPL networks. The research directed upon these attacks includes considerable vulnerabilities and efficiency issues. The rank attack on sensor networks is perhaps the utmost common, posing a challenge to network connectivity by falling data or disrupting routing routes. This work presents a rank attack detection system focusing on RPL. Considering many of such issues a method has been proposed using spatial correlation function (SCF) and Dijkstra's algorithm considering parameters like energy and throughput.
2020-03-02
Wang, Qing, Wang, Zengfu, Guo, Jun, Tahchi, Elias, Wang, Xinyu, Moran, Bill, Zukerman, Moshe.  2019.  Path Planning of Submarine Cables. 2019 21st International Conference on Transparent Optical Networks (ICTON). :1–4.
Submarine optical-fiber cables are key components in the conveying of Internet data, and their failures have costly consequences. Currently, there are over a million km of such cables empowering the Internet. To carry the ever-growing Internet traffic, additional 100,000s of km of cables will be needed in the next few years. At an average cost of \$28,000 per km, this entails investments of billions of dollars. In current industry practice, cable paths are planned manually by experts. This paper surveys our recent work on cable path planning algorithms, where we use several methods to plan cable paths taking account of a range of cable risk factors in addition to cable costs. Two methods, namely, the fast marching method (FMM) and the Dijkstra's algorithm are applied here to long-haul cable path design in a new geographical region. A specific example is given to demonstrate the benefit of the FMM-based method in terms of the better path planning solutions over the Dijkstra's algorithm.