Visible to the public Biblio

Filters: Keyword is FDD  [Clear All Filters]
2022-07-14
Henkel, Werner, Namachanja, Maria.  2021.  A Simple Physical-Layer Key Generation for Frequency-Division Duplexing (FDD). 2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS). :1—6.
Common randomness of channels offers the possibility to create cryptographic keys without the need for a key exchange procedure. Channel reciprocity for TDD (time-division duplexing) systems has been used for this purpose many times. FDD (frequency-division duplexing) systems, however, were long considered to not provide any usable symmetry. However, since the scattering transmission parameters S\textbackslashtextlessinf\textbackslashtextgreater12\textbackslashtextless/inf\textbackslashtextgreater and S\textbackslashtextlessinf\textbackslashtextgreater21\textbackslashtextless/inf\textbackslashtextgreater would ideally be the same due to reciprocity, when using neighboring frequency ranges for both directions, they would just follow a continuous curve when putting them next to each other. To not rely on absolute phase, we use phase differences between antennas and apply a polynomial curve fitting, thereafter, quantize the midpoint between the two frequency ranges with the two measurement directions. This is shown to work even with some spacing between the two bands. For key reconciliation, we force the measurement point from one direction to be in the midpoint of the quantization interval by a grid shift (or likewise measurement data shift). Since the histogram over the quantization intervals does not follow a uniform distribution, some source coding / hashing will be necessary. The key disagreement rate toward an eavesdropper was found to be close to 0.5. Additionally, when using an antenna array, a random permutation of antenna measurements can even further improve the protection against eavesdropping.
2020-03-04
Yao, Li, Peng, Linning, Li, Guyue, Fu, Hua, Hu, Aiqun.  2019.  A Simulation and Experimental Study of Channel Reciprocity in TDD and FDD Wiretap Channels. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :113–117.

In recent years, secret key generation based on physical layer security has gradually attracted high attentions. The wireless channel reciprocity and eavesdropping attack are critical problems in secret key generation studies. In this paper, we carry out a simulation and experimental study of channel reciprocity in terms of measuring channel state information (CSI) in both time division duplexing (TDD) and frequency division duplexing (FDD) modes. In simulation study, a close eavesdropping wiretap channel model is introduced to evaluate the security of the CSI by using Pearson correlation coefficient. In experimental study, an indoor wireless CSI measurement system is built with N210 and X310 universal software radio peripheral (USRP) platforms. In TDD mode, theoretical analysis and most of experimental results show that the closer eavesdropping distance, the higher CSI correlation coefficient between eavesdropping channel and legitimate channel. However, in actual environment, when eavesdropping distance is too close (less than 1/4 wavelength), this CSI correlation seriously dropped. In FDD mode, both theoretical analysis and experimental results show that the wireless channel still owns some reciprocity. When frequency interval increases, the FDD channel reciprocity in actual environment is better than that in theoretical analysis.