Visible to the public Biblio

Filters: Keyword is Android application  [Clear All Filters]
2022-08-02
Karthikeyan, P., Anandaraj, S.P., Vignesh, R., Poornima, S..  2021.  Review on Trustworthy Analysis in binary code. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1386—1389.
The software industry is dominating many are like health care, finance, agriculture and entertainment. Software security has become an essential issue-outsider libraries, which assume a significant part in programming. The finding weaknesses in the binary code is a significant issue that presently cannot seem to be handled, as showed by numerous weaknesses wrote about an everyday schedule. Software seller sells the software to the client if the client wants to check the software's vulnerability it is a cumbersome task. Presently many deep learning-based methods also introduced to find the security weakness in the binary code. This paper present the merits and demerits of binary code analysis used by a different method.
2021-03-22
Sai, C. C., Prakash, C. S., Jose, J., Mana, S. C., Samhitha, B. K..  2020.  Analysing Android App Privacy Using Classification Algorithm. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :551–555.
The interface permits the client to scan for a subjective utility on the Play Store; the authorizations posting and the protection arrangement are then routinely recovered, on all events imaginable. The client has then the capability of choosing an interesting authorization, and a posting of pertinent sentences are separated with the guide of the privateer's inclusion and introduced to them, alongside a right depiction of the consent itself. Such an interface allows the client to rapidly assess the security-related dangers of an Android application, by utilizing featuring the pertinent segments of the privateer's inclusion and by introducing helpful data about shrewd authorizations. A novel procedure is proposed for the assessment of privateer's protection approaches with regards to Android applications. The gadget actualized widely facilitates the way toward understanding the security ramifications of placing in 1/3 birthday celebration applications and it has just been checked in a situation to feature troubling examples of uses. The gadget is created in light of expandability, and correspondingly inclines in the strategy can without trouble be worked in to broaden the unwavering quality and adequacy. Likewise, if your application handles non-open or delicate individual information, it would be ideal if you also allude to the extra necessities in the “Individual and Sensitive Information” territory underneath. These Google Play necessities are notwithstanding any prerequisites endorsed by method for material security or data assurance laws. It has been proposed that, an individual who needs to perform the establishment and utilize any 1/3 festival application doesn't perceive the significance and which methods for the consents mentioned by method for an application, and along these lines sincerely gives all the authorizations as a final product of which unsafe applications furthermore get set up and work their malevolent leisure activity in the rear of the scene.
2020-12-17
Kumar, R., Sarupria, G., Panwala, V., Shah, S., Shah, N..  2020.  Power Efficient Smart Home with Voice Assistant. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—5.

The popularity and demand of home automation has increased exponentially in recent years because of the ease it provides. Recently, development has been done in this domain and few systems have been proposed that either use voice assistants or application for controlling the electrical appliances. However; less emphasis is laid on power efficiency and this system cannot be integrated with the existing appliances and hence, the entire system needs to be upgraded adding to a lot of additional cost in purchasing new appliances. In this research, the objective is to design such a system that emphasises on power efficiency as well as can be integrated with the already existing appliances. NodeMCU, along with Raspberry Pi, Firebase realtime database, is used to create a system that accomplishes such endeavours and can control relays, which can control these appliances without the need of replacing them. The experiments in this paper demonstrate triggering of electrical appliances using voice assistant, fire alarm on the basis of flame sensor and temperature sensor. Moreover; use of android application was presented for operating electrical appliances from a remote location. Lastly, the system can be modified by adding security cameras, smart blinds, robot vacuums etc.

2019-11-25
Chowdhury, Rajdeep, Mitra, Paromita, Kumar, Sukhwant, Singh, Satyam, Singh, Aditya Narayan.  2018.  Design and Implementation of Hormonal Cycle Based Cryptographic Modus Operandi and Android Application Development for Cosseted Transmission. 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT). :32–37.

Android Applications have become an integral fraction of entwined contemporary subsistence. The entire sphere is employing diverse assortment of applications for distinguished intention. Among all the flamboyant assortment of applications, some applications have engrossed apiece individual and are unanimously accepted. With apiece fleeting instant, numerous applications are emerging in the market and are contending amid the contemporary applications in use. The proposed work is a pioneering approach to develop an application for message transference in a cosseted manner. The eminence of the work lies in ensuring that the messages send are in a coded structure, more precisely in encrypted form, formulated from the proposed Cryptographic modus operandi. The focal intention of the proposed work is to augment the status of safekeeping in data transference. The work is a multidisciplinary work and includes Biological principles in devising the Cryptographic modus operandi. Hormonal system is one of the most decisive fractions of human well-being and fundamental structure. There are numerous hormones meant for diverse purposes in human anatomy, more precisely, they are exclusively distinct for male and female. Although, the numeral quotient of hormones is colossal, but in the work, preferred male and female hormones have been employed. The hormones employed, their operational cycle and their way of illustration in the proposed work opens a unique mode to encrypt data and augment the safekeeping echelon. The augmented safekeeping could unearth its employment in numerous modes and in countless places, not only for personal purposes but could also be employed for organizational purpose. The Android Application for the said Cryptographic modus operandi is an initiative for safekeeping of apiece individual employing the Application as well as a universal mold for societal impact on the whole.

2019-11-11
Wang, Xiaoyin, Qin, Xue, Bokaei Hosseini, Mitra, Slavin, Rocky, Breaux, Travis D., Niu, Jianwei.  2018.  GUILeak: Tracing Privacy Policy Claims on User Input Data for Android Applications. 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). :37–47.
The Android mobile platform supports billions of devices across more than 190 countries around the world. This popularity coupled with user data collection by Android apps has made privacy protection a well-known challenge in the Android ecosystem. In practice, app producers provide privacy policies disclosing what information is collected and processed by the app. However, it is difficult to trace such claims to the corresponding app code to verify whether the implementation is consistent with the policy. Existing approaches for privacy policy alignment focus on information directly accessed through the Android platform (e.g., location and device ID), but are unable to handle user input, a major source of private information. In this paper, we propose a novel approach that automatically detects privacy leaks of user-entered data for a given Android app and determines whether such leakage may violate the app's privacy policy claims. For evaluation, we applied our approach to 120 popular apps from three privacy-relevant app categories: finance, health, and dating. The results show that our approach was able to detect 21 strong violations and 18 weak violations from the studied apps.
2018-02-21
Demirol, D., Das, R., Tuna, G..  2017.  An android application to secure text messages. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). :1–6.

For mobile phone users, short message service (SMS) is the most commonly used text-based communication type on mobile devices. Users can interact with other users and services via SMS. For example, users can send private messages, use information services, apply for a job advertisement, conduct bank transactions, and so on. Users should be very careful when using SMS. During the sending of SMS, the message content should be aware that it can be captured and act accordingly. Based on these findings, the elderly, called as “Silent Generation” which represents 70 years or older adults, are text messaging much more than they did in the past. Therefore, they need solutions which are both simple and secure enough if there is a need to send sensitive information via SMS. In this study, we propose and develop an android application to secure text messages. The application has a simple and easy-to-use graphical user interface but provides significant security.

2017-09-06
Rahman, Akond, Pradhan, Priysha, Partho, Asif, Williams, Laurie.  2017.  Predicting Android Application Security and Privacy Risk with Static Code Metrics. Proceedings of the 4th International Conference on Mobile Software Engineering and Systems. :149–153.

Android applications pose security and privacy risks for end-users. These risks are often quantified by performing dynamic analysis and permission analysis of the Android applications after release. Prediction of security and privacy risks associated with Android applications at early stages of application development, e.g. when the developer (s) are writing the code of the application, might help Android application developers in releasing applications to end-users that have less security and privacy risk. The goal of this paper is to aid Android application developers in assessing the security and privacy risk associated with Android applications by using static code metrics as predictors. In our paper, we consider security and privacy risk of Android application as how susceptible the application is to leaking private information of end-users and to releasing vulnerabilities. We investigate how effectively static code metrics that are extracted from the source code of Android applications, can be used to predict security and privacy risk of Android applications. We collected 21 static code metrics of 1,407 Android applications, and use the collected static code metrics to predict security and privacy risk of the applications. As the oracle of security and privacy risk, we used Androrisk, a tool that quantifies the amount of security and privacy risk of an Android application using analysis of Android permissions and dynamic analysis. To accomplish our goal, we used statistical learners such as, radial-based support vector machine (r-SVM). For r-SVM, we observe a precision of 0.83. Findings from our paper suggest that with proper selection of static code metrics, r-SVM can be used effectively to predict security and privacy risk of Android applications.

2017-03-08
Pienaar, J. P., Fisher, R. M., Hancke, G. P..  2015.  Smartphone: The key to your connected smart home. 2015 IEEE 13th International Conference on Industrial Informatics (INDIN). :999–1004.

Automation systems are gaining popularity around the world. The use of these powerful technologies for home security has been proposed and some systems have been developed. Other implementations see the user taking a central role in providing and receiving updates to the system. We propose a system making use of an Android based smartphone as the user control point. Our Android application allows for dual factor (facial and secret pin) based authentication in order to protect the privacy of the user. The system successfully implements facial recognition on the limited resources of a smartphone by making use of the Eigenfaces algorithm. The system we created was designed for home automation but makes use of technologies that allow it to be applied within any environment. This opens the possibility for more research into dual factor authentication and the architecture of our system provides a blue print for the implementation of home based automation systems. This system with minimal modifications can be applied within an industrial application.

2015-05-04
Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, Shi Chenjie.  2014.  Modelling Analysis and Auto-detection of Cryptographic Misuse in Android Applications. Dependable, Autonomic and Secure Computing (DASC), 2014 IEEE 12th International Conference on. :75-80.

Cryptographic misuse affects a sizeable portion of Android applications. However, there is only an empirical study that has been made about this problem. In this paper, we perform a systematic analysis on the cryptographic misuse, build the cryptographic misuse vulnerability model and implement a prototype tool Crypto Misuse Analyser (CMA). The CMA can perform static analysis on Android apps and select the branches that invoke the cryptographic API. Then it runs the app following the target branch and records the cryptographic API calls. At last, the CMA identifies the cryptographic API misuse vulnerabilities from the records based on the pre-defined model. We also analyze dozens of Android apps with the help of CMA and find that more than a half of apps are affected by such vulnerabilities.
 

Novak, E., Qun Li.  2014.  Near-pri: Private, proximity based location sharing. INFOCOM, 2014 Proceedings IEEE. :37-45.

As the ubiquity of smartphones increases we see an increase in the popularity of location based services. Specifically, online social networks provide services such as alerting the user of friend co-location, and finding a user's k nearest neighbors. Location information is sensitive, which makes privacy a strong concern for location based systems like these. We have built one such service that allows two parties to share location information privately and securely. Our system allows every user to maintain and enforce their own policy. When one party, (Alice), queries the location of another party, (Bob), our system uses homomorphic encryption to test if Alice is within Bob's policy. If she is, Bob's location is shared with Alice only. If she is not, no user location information is shared with anyone. Due to the importance and sensitivity of location information, and the easily deployable design of our system, we offer a useful, practical, and important system to users. Our main contribution is a flexible, practical protocol for private proximity testing, a useful and efficient technique for representing location values, and a working implementation of the system we design in this paper. It is implemented as an Android application with the Facebook online social network used for communication between users.