Visible to the public Biblio

Filters: Keyword is IPv6 networks  [Clear All Filters]
2020-01-21
Li, Chunlei, Wu, Qian, Li, Hewu, Zhou, Jiang.  2019.  SDN-Ti: A General Solution Based on SDN to Attacker Traceback and Identification in IPv6 Networks. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.

Network attacks have become a growing threat to the current Internet. For the enhancement of network security and accountability, it is urgent to find the origin and identity of the adversary who misbehaves in the network. Some studies focus on embedding users' identities into IPv6 addresses, but such design cannot support the Stateless Address Autoconfiguration (SLAAC) protocol which is widely deployed nowadays. In this paper, we propose SDN-Ti, a general solution to traceback and identification for attackers in IPv6 networks based on Software Defined Network (SDN). In our proposal, the SDN switch performs a translation between the source IPv6 address of the packet and its trusted ID-encoded address generated by the SDN controller. The network administrator can effectively identify the attacker by parsing the malicious packets when the attack incident happens. Our solution not only avoids the heavy storage overhead and time synchronism problems, but also supports multiple IPv6 address assignment scenarios. What's more, SDN-Ti does not require any modification on the end device, hence can be easily deployed. We implement SDN-Ti prototype and evaluate it in a real IPv6 testbed. Experiment results show that our solution only brings very little extra performance cost, and it shows considerable performance in terms of latency, CPU consumption and packet loss compared to the normal forwarding method. The results indicate that SDN-Ti is feasible to be deployed in practice with a large number of users.

2019-01-21
Leal, A. G., Teixeira, Í C..  2018.  Development of a suite of IPv6 vulnerability scanning tests using the TTCN-3 language. 2018 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.

With the transition from IPv4 IPv6 protocol to improve network communications, there are concerns about devices and applications' security that must be dealt at the beginning of implementation or during its lifecycle. Automate the vulnerability assessment process reduces management overhead, enabling better management of risks and control of the vulnerabilities. Consequently, it reduces the effort needed for each test and it allows the increase of the frequency of application, improving time management to perform all the other complicated tasks necessary to support a secure network. There are several researchers involved in tests of vulnerability in IPv6 networks, exploiting addressing mechanisms, extension headers, fragmentation, tunnelling or dual-stack networks (using both IPv4 and IPv6 at the same time). Most existing tools use the programming languages C, Java, and Python instead of a language designed specifically to create a suite of tests, which reduces maintainability and extensibility of the tests. This paper presents a solution for IPv6 vulnerabilities scan tests, based on attack simulations, combining passive analysis (observing the manifestation of behaviours of the system under test) and an active one (stimulating the system to become symptomatic). Also, it describes a prototype that simulates and detects denial-of-service attacks on the ICMPv6 Protocol from IPv6. Also, a detailed report is created with the identified vulnerability and the possible existing solutions to mitigate such a gap, thus assisting the process of vulnerability management.

2015-05-04
Naito, K., Mori, K., Kobayashi, H., Kamienoo, K., Suzuki, H., Watanabe, A..  2014.  End-to-end IP mobility platform in application layer for iOS and Android OS. Consumer Communications and Networking Conference (CCNC), 2014 IEEE 11th. :92-97.


Smartphones are a new type of mobile devices that users can install additional mobile software easily. In the almost all smartphone applications, client-server model is used because end-to-end communication is prevented by NAT routers. Recently, some smartphone applications provide real time services such as voice and video communication, online games etc. In these applications, end-to-end communication is suitable to reduce transmission delay and achieve efficient network usage. Also, IP mobility and security are important matters. However, the conventional IP mobility mechanisms are not suitable for these applications because most mechanisms are assumed to be installed in OS kernel. We have developed a novel IP mobility mechanism called NTMobile (Network Traversal with Mobility). NTMobile supports end-to-end IP mobility in IPv4 and IPv6 networks, however, it is assumed to be installed in Linux kernel as with other technologies. In this paper, we propose a new type of end-to-end mobility platform that provides end-to-end communication, mobility, and also secure data exchange functions in the application layer for smartphone applications. In the platform, we use NTMobile, which is ported as the application program. Then, we extend NTMobile to be suitable for smartphone devices and to provide secure data exchange. Client applications can achieve secure end-to-end communication and secure data exchange by sharing an encryption key between clients. Users also enjoy IP mobility which is the main function of NTMobile in each application. Finally, we confirmed that the developed module can work on Android system and iOS system.
 

Naito, K., Mori, K., Kobayashi, H., Kamienoo, K., Suzuki, H., Watanabe, A..  2014.  End-to-end IP mobility platform in application layer for iOS and Android OS. Consumer Communications and Networking Conference (CCNC), 2014 IEEE 11th. :92-97.

Smartphones are a new type of mobile devices that users can install additional mobile software easily. In the almost all smartphone applications, client-server model is used because end-to-end communication is prevented by NAT routers. Recently, some smartphone applications provide real time services such as voice and video communication, online games etc. In these applications, end-to-end communication is suitable to reduce transmission delay and achieve efficient network usage. Also, IP mobility and security are important matters. However, the conventional IP mobility mechanisms are not suitable for these applications because most mechanisms are assumed to be installed in OS kernel. We have developed a novel IP mobility mechanism called NTMobile (Network Traversal with Mobility). NTMobile supports end-to-end IP mobility in IPv4 and IPv6 networks, however, it is assumed to be installed in Linux kernel as with other technologies. In this paper, we propose a new type of end-to-end mobility platform that provides end-to-end communication, mobility, and also secure data exchange functions in the application layer for smartphone applications. In the platform, we use NTMobile, which is ported as the application program. Then, we extend NTMobile to be suitable for smartphone devices and to provide secure data exchange. Client applications can achieve secure end-to-end communication and secure data exchange by sharing an encryption key between clients. Users also enjoy IP mobility which is the main function of NTMobile in each application. Finally, we confirmed that the developed module can work on Android system and iOS system.