Visible to the public Biblio

Filters: Keyword is vulnerability predication  [Clear All Filters]
2021-05-18
Feng, Qi, Feng, Chendong, Hong, Weijiang.  2020.  Graph Neural Network-based Vulnerability Predication. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). :800–801.
Automatic vulnerability detection is challenging. In this paper, we report our in-progress work of vulnerability prediction based on graph neural network (GNN). We propose a general GNN-based framework for predicting the vulnerabilities in program functions. We study the different instantiations of the framework in representative program graph representations, initial node encodings, and GNN learning methods. The preliminary experimental results on a representative benchmark indicate that the GNN-based method can improve the accuracy and recall rates of vulnerability prediction.
2020-03-09
Moukahal, Lama, Zulkernine, Mohammad.  2019.  Security Vulnerability Metrics for Connected Vehicles. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :17–23.

Software integration in modern vehicles is continuously expanding. This is due to the fact that vehicle manufacturers are always trying to enhance and add more innovative and competitive features that may rely on complex software functionalities. However, these features come at a cost. They amplify the security vulnerabilities in vehicles and lead to more security issues in today's automobiles. As a result, the need for identifying vulnerable components in a vehicle software system has become crucial. Security experts need to know which components of the vehicle software system can be exploited for attacks and should focus their testing and inspection efforts on it. Nevertheless, it is a challenging and costly task to identify these weak components in a vehicle's system. In this paper, we propose some security vulnerability metrics for connected vehicles that aim to assist software testers during the development life-cycle in order to identify the frail links that put the vehicle at highsecurity risks. Vulnerable function assessment can give software testers a good idea about which components in a connected vehicle need to be prioritized in order to mitigate the risk and hence secure the vehicle. The proposed metrics were applied to OpenPilot - a software that provides Autopilot feature - and has been integrated with 48 different vehicles.. The application shows how the defined metrics can be effectively used to quantitatively measure the vulnerabilities of a vehicle software system.