Visible to the public Biblio

Filters: Keyword is Privacy Engineering  [Clear All Filters]
2021-05-20
Olejnik, Lukasz.  2020.  Shedding light on web privacy impact assessment: A case study of the Ambient Light Sensor API. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :310—313.

As modern web browsers gain new and increasingly powerful features the importance of impact assessments of the new functionality becomes crucial. A web privacy impact assessment of a planned web browser feature, the Ambient Light Sensor API, indicated risks arising from the exposure of overly precise information about the lighting conditions in the user environment. The analysis led to the demonstration of direct risks of leaks of user data, such as the list of visited websites or exfiltration of sensitive content across distinct browser contexts. Our work contributed to the creation of web standards leading to decisions by browser vendors (i.e. obsolescence, non-implementation or modification to the operation of browser features). We highlight the need to consider broad risks when making reviews of new features. We offer practically-driven high-level observations lying on the intersection of web security and privacy risk engineering and modeling, and standardization. We structure our work as a case study from activities spanning over three years.

2020-03-09
Fhom, Hervais Simo, Bayarou, Kpatcha M..  2011.  Towards a Holistic Privacy Engineering Approach for Smart Grid Systems. 2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications. :234–241.

Protecting energy consumers's data and privacy is a key factor for the further adoption and diffusion of smart grid technologies and applications. However, current smart grid initiatives and implementations around the globe tend to either focus on the need for technical security to the detriment of privacy or consider privacy as a feature to add after system design. This paper aims to contribute towards filling the gap between this fact and the accepted wisdom that privacy concerns should be addressed as early as possible (preferably when modeling system's requirements). We present a methodological framework for tackling privacy concerns throughout all phases of the smart grid system development process. We describe methods and guiding principles to help smart grid engineers to elicit and analyze privacy threats and requirements from the outset of the system development, and derive the best suitable countermeasures, i.e. privacy enhancing technologies (PETs), accordingly. The paper also provides a summary of modern PETs, and discusses their context of use and contributions with respect to the underlying privacy engineering challenges and the smart grid setting being considered.