Visible to the public Biblio

Filters: Keyword is user preferences  [Clear All Filters]
2020-09-28
Kohli, Nitin, Laskowski, Paul.  2018.  Epsilon Voting: Mechanism Design for Parameter Selection in Differential Privacy. 2018 IEEE Symposium on Privacy-Aware Computing (PAC). :19–30.
The behavior of a differentially private system is governed by a parameter epsilon which sets a balance between protecting the privacy of individuals and returning accurate results. While a system owner may use a number of heuristics to select epsilon, existing techniques may be unresponsive to the needs of the users who's data is at risk. A promising alternative is to allow users to express their preferences for epsilon. In a system we call epsilon voting, users report the parameter values they want to a chooser mechanism, which aggregates them into a single value. We apply techniques from mechanism design to ask whether such a chooser mechanism can itself be truthful, private, anonymous, and also responsive to users. Without imposing restrictions on user preferences, the only feasible mechanisms belong to a class we call randomized dictatorships with phantoms. This is a restrictive class in which at most one user has any effect on the chosen epsilon. On the other hand, when users exhibit single-peaked preferences, a broader class of mechanisms - ones that generalize the median and other order statistics - becomes possible.
2015-05-04
Swati, K., Patankar, A.J..  2014.  Effective personalized mobile search using KNN. Data Science Engineering (ICDSE), 2014 International Conference on. :157-160.

Effective Personalized Mobile Search Using KNN, implements an architecture to improve user's personalization effectiveness over large set of data maintaining security of the data. User preferences are gathered through clickthrough data. Clickthrough data obtained is sent to the server in encrypted form. Clickthrough data obtained is classified into content concepts and location concepts. To improve classification and minimize processing time, KNN(K Nearest Neighborhood) algorithm is used. Preferences identified(location and content) are merged to provide effective preferences to the user. System make use of four entropies to balance weight between content concepts and location concepts. System implements client server architecture. Role of client is to collect user queries and to maintain them in files for future reference. User preference privacy is ensured through privacy parameters and also through encryption techniques. Server is responsible to carry out the tasks like training, reranking of the search results obtained and the concept extraction. Experiments are carried out on Android based mobile. Results obtained through experiments show that system significantly gives improved results over previous algorithm for the large set of data maintaining security.